Precision Board High-Density Urethane
Published

NASA selects SpaceX to head human lander development for Artemis moon mission

HLS to act as final mode of transportation to take astronauts to the lunar surface for the Artemis program, with potential future travel to Mars and other destinations.

Share

Illustration of SpaceX Starship human lander design.

Illustration of SpaceX Starship human lander design that will carry the first NASA astronauts to the surface of the Moon under the Artemis program. Photo Credit: SpaceX

In preparation to send astronauts to explore more of the moon as part of the Artemis lunar exploration program, NASA has selected SpaceX (Hawthorne, Calif., U.S.) to continue development of the first commercial human lander that will safely carry the next two American astronauts to the lunar surface in 2024. At least one of those astronauts will make history as the first woman on the moon. Another goal of the Artemis program includes landing the first person of color on the lunar surface. SpaceX was one U.S. company chosen out of the three — including Dynetics (a Leidos company, Huntsville, Ala., U.S.) and Blue Origin (Kent, Wash., U.S.)—originally selected in April 2020 to design and develop human landing system (HLS) concepts for the program.

The agency’s Space Launch System (SLS) rocket will launch four astronauts aboard the Orion spacecraft for their multi-day journey to lunar orbit. There, two crew members will transfer to the SpaceX HLS for the final leg of their journey to the surface of the moon. After approximately a week exploring the surface, they will board the lander for their short trip back to orbit where they will return to Orion and their colleagues before heading back to Earth. The firm-fixed price, milestone-based contract total award value is $2.89 billion.

“With this award, NASA and our partners will complete the first crewed demonstration mission to the surface of the moon in the 21st century as the agency takes a step forward for women’s equality and long-term deep space exploration,” says Kathy Lueders, NASA’s associate administrator for Human Explorations and Operations Mission Directorate. “This critical step puts humanity on a path to sustainable lunar exploration and keeps our eyes on missions farther into the solar system, including Mars.”

SpaceX has been working closely with NASA experts during the HLS base period of performance to inform its lander design and ensure it meets NASA’s performance requirements and human spaceflight standards. A key tenet for safe systems, these agreed-upon standards range from areas of engineering, safety, health and medical technical areas.

“This is an exciting time for NASA and especially the Artemis team,” says Lisa Watson-Morgan, program manager for HLS at NASA’s Marshall Space Flight Center in Huntsville, Ala. “During the Apollo program, we proved that it is possible to do the seemingly impossible: land humans on the moon. By taking a collaborative approach in working with industry while leveraging NASA’s proven technical expertise and capabilities, we will return American astronauts to the moon’s surface once again, this time to explore new areas for longer periods of time.”

SpaceX’s HLS Starship, designed to land on the moon, leans on the company’s tested Raptor engines and flight heritage of the Falcon 1 and Dragon 9 vehicles. Starship includes a spacious cabin and two airlocks for astronaut moonwalks. The Starship architecture is intended to evolve to a fully reusable launch and landing system designed for travel to the moon, Mars and other destinations. While SpaceX CEO Elon Musk indicated the Starship’s design was to use stainless steel over carbon fiber back in 2019, the use for composites elsewhere might remain a possibility.

The HLS award is made under the Next Space Technologies for Exploration Partnerships (NextSTEP-2) Appendix H Broad Agency Announcement (BAA).

In parallel with executing the Appendix H award, NASA intends to implement a competitive procurement for sustainable crewed lunar surface transportation services that will provide human access to the lunar surface using the Gateway on a regularly recurring basis beyond the initial crewed demonstration mission.

With NASA’s Space Launch System rocket, Orion spacecraft, HLS and the Gateway lunar outpost, NASA and its commercial and international partners are returning to the moon for scientific discovery, economic benefits and inspiration for a new generation. Working with its partners throughout the Artemis program, the agency will fine-tune precision landing technologies and develop new mobility capabilities to enable exploration of new regions of the Moon. On the surface, the agency has proposed building a new habitat and rovers, testing new power systems and more. These and other innovations and advancements made under the Artemis program will ensure that NASA and its partners are ready for human exploration’s next big step — the exploration of Mars.

De-Comp Composite Materials and Supplies
Park Aerospace Corp.
Composites One
Precision Board High-Density Urethane
Janicki employees laying up a carbon fiber part
UV Cured Powder Coating from Keyland Polymer
3D industrial laser projection
CompositesWorld
KraussMaffei Metering Systems
NewStar Adhesives - Nautical Adhesives
CompositesWorld
Thermwood Corp.

Related Content

Marine

Carbon fiber in pressure vessels for hydrogen

The emerging H2 economy drives tank development for aircraft, ships and gas transport.

Read More
Plant Tours

Plant tour: Joby Aviation, Marina, Calif., U.S.

As the advanced air mobility market begins to take shape, market leader Joby Aviation works to industrialize composites manufacturing for its first-generation, composites-intensive, all-electric air taxi.

Read More
Sustainability

Materials & Processes: Resin matrices for composites

The matrix binds the fiber reinforcement, gives the composite component its shape and determines its surface quality. A composite matrix may be a polymer, ceramic, metal or carbon. Here’s a guide to selection.

Read More
Feature

Thermoplastic composites welding advances for more sustainable airframes

Multiple demonstrators help various welding technologies approach TRL 6 in the quest for lighter weight, lower cost.

Read More

Read Next

Aerospace

Spacesuits for the next generation

NASA has unveiled two new spacesuit designs that will be used for the Artemis program moon missions.

Read More
Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Pressure Vessels

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Precision Board High-Density Urethane