Wichita’s NIAR delivers fiber metal laminate test panel to FAA
Aluminum and fiberglass fuselage panel is one of five panels that NIAR and partners are designing, fabricating and testing to assess emerging metallic structure technologies.
EMST panel 4 with fiber metal laminate reinforcements under ribs and stringers was manufactured by NIAR’s Advanced Machining and Prototyping facility. Source | Wichita State University (WSU)
The National Institute for Aviation Research (NIAR) at Wichita State University (WSU, Kan., U.S.) recently completed fabrication and delivery of a full-scale fuselage structural test panel to the Federal Aviation Administration’s William J. Hughes Technical Center in Atlantic City, New Jersey.
In partnership with Arconic (Pittsburgh, Pa., U.S.), Embraer (São Paulo, Brazil) and NIAR, the FAA is assessing emerging metallic structures technologies (EMST) through test and analysis using the FAA’s Full-Scale Aircraft Structural Test Evaluation and Research and Structures and Materials Lab. Several technologies will be considered including advanced aluminum-lithium alloys and hybrid construction. Altogether, five fuselage panels with various EMST will be designed, fabricated and tested in this multiyear effort.
This panel is the fourth panel evaluating the fatigue and damage tolerance capabilities of fuselage structure using hybrid fiber metal laminate (FML) as reinforcement between skin and substructures. The upcoming fifth panel will be optimized version of panel four considering weight saving and reducing manufacturing cost.
NIAR engineers collaborated with industry partners to design and fabricate the test panel — with analytical support from Embraer and aluminum sheets and extrusions provided by Arconic. The program also included various test coupon configurations to characterize materials and key design features.
Engineers from the FAA’s technical center are evaluating analytical and inspection methods to ensure accurate design and assessment of these new structures. Full-scale testing is essential for generating data to assess the EMST fuselage concepts on structural performance compared to current baseline aluminum fuselage structures
NIAR’s Advanced Machining and Prototyping (AMP) and Advanced Technologies Lab for Aerospace Systems (ATLAS) played crucial roles, developing detailed part and assembly drawings, creating manufacturing process specifications, fabricating necessary tooling, autoclaves and assembling test articles.
Support was also provided by NIAR’s Advanced Materials Lab, where technicians meticulously planned, cut and laid the aluminum and fiberglass plies onto the skin, resulting in a uniformly co-cured FML-reinforced skin. Industry partners Textron Aviation (Wichita, Kan., U.S.), CAPPS Manufacturing (Wichita) and Weatherford Aerospace (Weatherford, Texas, U.S.) provided key manufacturing process capabilities needed to accomplish the NIAR team’s fabrication process requirements.
“In support of the FAA’s critical needs and its industry partners, NIAR provides cost-effective and timely design, fabrication and assembly services based on a solid engineering foundation,” says Paul Jonas, program lead. “By bringing together industry experts, graduate and undergraduate engineers, and state-of-the-art manufacturing and assembly capabilities, NIAR plays a key role in advancing the materials and manufacturing of future aircraft while developing the next generation of aerospace talent in the U.S.”
Related Content
-
Manufacturing the MFFD thermoplastic composite fuselage
Demonstrator’s upper, lower shells and assembly prove materials and new processes for lighter, cheaper and more sustainable high-rate future aircraft.
-
PEEK vs. PEKK vs. PAEK and continuous compression molding
Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.
-
TU Munich develops cuboidal conformable tanks using carbon fiber composites for increased hydrogen storage
Flat tank enabling standard platform for BEV and FCEV uses thermoplastic and thermoset composites, overwrapped skeleton design in pursuit of 25% more H2 storage.