Thermolysis, BASF Taiwan present low-emission rCF/TPU materials development
At a Taipei event focused on CO2 emissions reduction, design flexibility and zero-waste solutions, partners promoted recycled carbon fiber (rCF) and polyurethane composite technologies.
Recycled carbon fiber (rCF) nonwoven fabrics jointly developed by BASF and Thermolysis. Source (All Images) | Thermolysis Co. Ltd.
Thermolysis Co. Ltd. (Taichung City, Taiwan) announces its collaboration with chemicals company BASF Taiwan (Taipei) jointly advancing the development of recycled carbon fiber-reinforced thermoplastic polyurethane (rCF/TPU) composite materials. Thermolysis highlighted some of these developments in the “#ourplasticsjourney@Taipei event” hosted by BASF Taiwan on Oct. 17.
The event focused on key topics such as reducing CO2 emissions (CO2e reduction), enhancing design flexibility and achieving zero waste through sustainable material solutions. As a participant, Thermolysis showcased its materials and future development directions to major domestic brands, highlighting the potential of collaboration in various industries.
Peter Wu (left), Thermolysis chairman and Phil Chen (right), sales supervisor of BASF Performance Materials at the “#ourplasticsjourney@Taipei event” hosted by BASF Taiwan.
BASF Taiwan presented several rCF/TPU composite materials developed through the combination of its high-toughness TPU with Thermolysis’ rCF and processing technology. These materials included rCF/TPU nonwoven fabrics, injection pellets and sheets. During the event, BASF Taiwan noted that while traditional TPU materials are known for their versatility, the combination of these material innovations “significantly enhances the material’s strength without compromising its flexibility … offering diverse processing methods, meeting the needs of various product applications, with a significant advantage in the sports shoe industry.”
Moving forward, BASF and Thermolysis will continue to develop more sustainable and low-carbon solutions.
Related Content
-
Carbon fiber, bionic design achieve peak performance in race-ready production vehicle
Porsche worked with Action Composites to design and manufacture an innovative carbon fiber safety cage option to lightweight one of its series race vehicles, built in a one-shot compression molding process.
-
Filament winding increases access to high-performance composite prostheses
Steptics industrializes production of CFRP prostheses, enabling hundreds of parts/day and 50% lower cost.
-
Revisiting the OceanGate Titan disaster
A year has passed since the tragic loss of the Titan submersible that claimed the lives of five people. What lessons have been learned from the disaster?
