Airtech 3D Printing Solutions
Published

Beyond Gravity announces maiden flight of Vega-C rocket, features CFRP composites

Vega-C replaces the current Vega rocket, comprising a CFRP payload fairing and payload adapter system, as well as a more intuitive onboard computer, all of which is produced at Beyond Gravity’s various production sites.

Share

Artist’s view of Vega-C on the launch pad. Photo Credit: ESA–J. Huart

Beyond Gravity (formerly RUAG Space, Zürich, Switzerland) has delivered the composite payload fairing, the top of the new medium-lift European rocket Vega-C, which launches on July 13 for its inaugural flight. Beyond Gravity also produced the launcher computer and the Vampire payload adapter system, the latter of which also uses carbon fiber-reinforced polymer (CFRP) composites.

Vega-C is scheduled to lift off from the European spaceport in Kourou, South America, launching the company’s “LARES 2” Laser Relativity satellite. The spherical satellite enables research into geodynamics and general relativity, Beyond Gravity says.

“The first flight of a new rocket is always a very special moment. We have delivered mission-critical products to the rocket with our payload fairing, our payload adapter system and the launcher’s onboard computer,” André Wall, CEO, Beyond Gravity, says. “Each product is customized for this new rocket and has new, enhanced features.” Vega-C replaces the current Vega rocket.

The top of the Vega-C rocket, the payload fairing, has a new design. “The fairing is larger than the fairing of the Vega rocket and can accommodate an additional payload mass of 800 kilograms,” Holger Wentscher, senior vice president, Launchers at Beyond Gravity, explains. “Additionally, our fairing includes state-of-the-art technologies that make it more versatile than its predecessor.” This also results in reduced launch costs per kilogram, the company says.

Vega-C payload fairings and Vampire payload adapter system.

The two halves of the Beyond Gravity payload fairings for Vega-C (left) and the “Vampire” payload adapter system from Beyond Gravity (right) in a cleanroom in Kourou. Photo Credit: Beyond Gravity

The ogive-shaped fairing at the top of Vega-C protects the satellites from thermal, acoustic and aerodynamic environment at launch and on the ascent to space. The 9-meter-high fairing with a diameter of 3.3 meters was produced at Beyond Gravity’s site in Emmen, Switzerland. The fairing is made of CFRP composites that were cured in an industrial oven. All payload fairings for any European rocket are said to comes from Beyond Gravity and this production facility.

Vega-C can be used for one, two or more payloads (satellites) per launch. To place a larger single satellite into space, Vega-C uses a payload adapter system called “Vampire.” “We have developed a new design for this adapter, which makes it possible to utilize the maximum performance of the Vega-C launcher. Our adapter makes sure, that the satellite is safely placed into orbit with [the] highest precision,” stresses Wentscher. All payload adapters and separations system from Beyond Gravity are produced at its site in Linköping, Sweden. The Vampire adapter will be used for single large payloads and can be used in combination with smaller payloads on the SSMS (Small Spacecraft Mission Service) multiple payload dispenser.

Moreover, during flight, the Vega-C launcher is controlled by an onboard computer (“brain”) from Beyond Gravity. “We have developed a new and improved version of our onboard computer, which is smaller, lighter and more cost efficient,” Wentscher says. The launcher onboard computer is being built at Beyond Gravity’s site in Gothenburg. Beyond Gravity also provided all computers for the Vega rockets.

world leader in braiding technology
Park Aerospace Corp.
Wind Blade Whitepaper
Epoxy Adhesives, Compounds, High Bond Strength
Toray Advanced Composites hi-temperature materials
Renegade Material Composites
Industrial CNC Routers
advanced materials
PTXPO 26
JEC World 2026
CONTRAX
Airtech

Related Content

Braiding

Aerospace prepregs with braided reinforcement demonstrate improved production rates, cost

A recent time study compares the layup of a wing spar using prepreg with A&P’s TX-45 continuous braided reinforcement versus traditional twill woven prepreg.

Read More
Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Marine

Revisiting the OceanGate Titan disaster

A year has passed since the tragic loss of the Titan submersible that claimed the lives of five people. What lessons have been learned from the disaster?

Read More

Carbon fiber, bionic design achieve peak performance in race-ready production vehicle

Porsche worked with Action Composites to design and manufacture an innovative carbon fiber safety cage option to lightweight one of its series race vehicles, built in a one-shot compression molding process.

Read More

Read Next

Aerospace

NASA reveals James Webb Telescope’s first images of an unseen universe

The world gets its first look at the full capabilities of the composites-intensive James Webb Space Telescope in space through a series of highly detailed images.

Read More
Predicting Failure

Cutting 100 pounds, certification time for the X-59 nose cone

Swift Engineering used HyperX software to remove 100 pounds from 38-foot graphite/epoxy cored nose cone for X-59 supersonic aircraft.

Read More
Natural Fibers

Scaling up, optimizing the flax fiber composite camper

Greenlander’s Sherpa RV cab, which is largely constructed from flax fiber/bio-epoxy sandwich panels, nears commercial production readiness and next-generation scale-up.

Read More
CONTRAX