Precision Board High-Density Urethane
Published

The black swan events hitting the composites industry

From the Boeing 787 to COVID-19: When the out-of-the-ordinary becomes ordinary — and affects the manufacturing supply chain.

Share

Boeing 737 MAX

Boeing 737 MAX. Source | Boeing

It’s March 11 as I write this. One year and one day ago, on March 10, 2019, the world was hit by what turned out to be the first in a series of black swan events. Ethiopian Airlines flight 302 crashed shortly after take-off from Addis Ababa Bole International Airport in Addis Ababa, Ethiopia. Everyone onboard died.

The plane, of course, was a 737 MAX. As we all know, the crash precipitated the grounding of the entire global 737 MAX fleet of 387 aircraft, followed by the slowing and then stopping of 737 MAX production altogether in December 2019 (black swan #2). The aerospace supply chain, in the meantime, was thrown in disarray, with about 400 manufactured-but-not-delivered aircraft in storage by Boeing. Spirit AeroSystems (Wichita, Kan., U.S.), which makes the aluminum fuselage for the entire 737 product line, was forced to lay off 2,800 employees in January 2020. Hundreds of other Tier 2 and Tier 3 suppliers have been similarly impacted. 

The harm done to the composites industry by the 737 MAX grounding has been, for the most part, indirect. Although there are some composites on the 737, they are mostly in the engines. The disruption we have felt is caused by 737 MAX ripples, as Boeing has committed vast resources to fixing the 737 MAX and getting it re-certified for flight. This has limited Boeing’s ability to focus on other projects.

Now is the time to prove the material capability, production capacity and technological aptitude required for next-generation aircraft. 

Consider, for example, that prior to March 10, 2019, Boeing was on a path to announce sometime in 2019 the New Midsize Aircraft (NMA), a new twin-aisle, 200-270-seat, 4,000-5,000-nautical-miles range plane that would fit between the 737 MAX 10 and the 787-8 in the company’s lineup. The NMA, the thinking was, would provide a technological stepping stone for composite materials and process maturation, en route to development of a single-aisle replacement for the 737, Boeing’s most popular and most profitable aircraft. The NMA would have entered service around 2025, followed by a single-aisle replacement around 2030.

That plan, apparently, is on hold — at least until the 737 MAX is back in service. And the NMA may not come to fruition at all. Airbus, at the 2019 Paris Air Show, announced the A321XLR, a long-range version of the A321 that is designed to allow longer city-pair flights (i.e., Madrid-Dubai) in a single-aisle configuration. (Flying that far in a single-aisle aircraft may not sound appealing, but it definitely will be profitable.) Boeing, seeing the popularity of the A321XLR, is rethinking the NMA and might . . . what? Morph the NMA into an XLR derivation? Skip right to the single-aisle replacement? And if that occurs, what happens to the composites technology maturation we’d hoped for?

Airbus, for its part, is happy to watch Boeing struggle to bring the 737 MAX back to life and figure out next steps for the NMA/single-aisle replacement. It is assumed that Airbus will also develop a single-aisle replacement for the A320 (circa 2030 service date), depending in part on what path Boeing chooses. Airbus is pursuing, for a new single-aisle, several high-profile composites M&P development efforts, including an infused wing (Wing of Tomorrow) a thermoplastic fuselage (Clean Sky 2) and more.

… the world could see a 9% drop in passenger air travel as a result of COVID-19, which will put even more pressure on the economy in general and the aerospace supply chain in particular.

The aerospace composites supply chain is, of course, watching all of this anxiously. There is a great desire among raw material suppliers (carbon fiber, glass fiber, fabrics, resins, etc.), intermediates producers (weavers, braiders, prepreggers) and fabricators of finished parts and structures to be a part of the supply chain for next-generation aircraft. Now is the time to prove the material capability, production capacity and technological aptitude required for next-generation aircraft. 

And then, of course, the black swan that is the 737 MAX was joined in January by the black swan that is COVID-19. Even as I write this, the virus has introduced such uncertainty into the global marketplace that air travel is depressed, schools have been closed, events (like JEC World 2020) have been postponed or canceled and the stock market has melted down (it’s down a whopping 5.9% today alone). Some air travel analysts suggest that the world could see a 9% drop in passenger air travel as a result of COVID-19, which will put even more pressure on the economy in general and the aerospace supply chain in particular. And no one knows how long it will be before normal returns.

But, normal will return. The 737 MAX will, gradually, return to
service. COVID-19 will fade, or at least become a part of the human
health landscape. New aircraft programs will be announced. And
even with future black swans the composites industry is still well-positioned for long-term growth.

Compression Molding
Precision Board High-Density Urethane
ultrasonic nondestructive testing solutions
PRO-SET® Fast Tacking Epoxy Adhesive
Compsoite and Metallic tooling, parts, assemblies
PTXPO 26
UV Cured Powder Coatings for Carbon Fiber
Industrial CNC Routers

Related Content

Aerospace

Plant tour: Collins Aerospace, Riverside, Calif., U.S. and Almere, Netherlands

Composite Tier 1’s long history, acquisition of stamped parts pioneer Dutch Thermoplastic Components, advances roadmap for growth in thermoplastic composite parts.

Read More
Aerospace

MFFD longitudinal seams welded, world's largest CFRTP fuselage successfully completed

Fraunhofer IFAM and partners have completed left and right welds connecting the upper and lower fuselage halves and sent the 8×4-meter full-scale section to ZAL for integration with a cabin crown module and testing.

Read More
NDT

Automated robotic NDT enhances capabilities for composites

Kineco Kaman Composites India uses a bespoke Fill Accubot ultrasonic testing system to boost inspection efficiency and productivity.

Read More

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More

Read Next

Application

Scaling up, optimizing the flax fiber composite camper

Greenlander’s Sherpa RV cab, which is largely constructed from flax fiber/bio-epoxy sandwich panels, nears commercial production readiness and next-generation scale-up.

Read More
PAEK

Ultrasonic welding for in-space manufacturing of CFRTP

Agile Ultrasonics and NASA trial robotic-compatible carbon fiber-reinforced thermoplastic ultrasonic welding technology for space structures.

Read More
Design/Simulation

Cutting 100 pounds, certification time for the X-59 nose cone

Swift Engineering used HyperX software to remove 100 pounds from 38-foot graphite/epoxy cored nose cone for X-59 supersonic aircraft.

Read More
High-Density Urethane (HDU) boards