UAMMI to produce 3D printed parts for Air Force

The Utah Advanced Materials & Manufacturing Initiative has been awarded nearly $1M in federal funds to produce carbon composite additive manufactured parts for the Air Force.


Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

The Utah Advanced Materials & Manufacturing Initiative (UAMMI, Kaysville, UT, US) announced April 25 that it has been awarded nearly $1M in federal funds to produce carbon composite additive manufactured parts for the Air Force. This technology will give UAMMI the ability to 3D print carbon based replacement parts for legacy aircraft on demand — something often prohibitively expensive and time consuming using traditional technologies.

UAMMI’s award constitutes a two-year project, and is set to begin in June 2018. The grant will come from the Air Force-driven MAMLS program (Maturation of Advanced Manufacturing for Low-Cost Sustainment), which was created in partnership with the Air Force Research Lab (AFRL, Wright-Patterson Air Force Base, OH, US), National Center for Defense Manufacturing and Machining (NCDMM, Blairsville, PA, US) and America Makes (Youngstown, OH, US). 

“Additive manufacturing represents a huge opportunity for Utah’s advanced manufacturing industry,” says Jeff Edwards, UAMMI Executive Director. “The carbon based components we will produce will be highly valuable to the Air Force as they will significantly reduce both the time and cost of aircraft repairs.”

“These projects will have a tremendous impact on ensuring the strategic readiness of the US Air Force,” says America Makes executive director Rob Gorham. “The anticipated project outcomes will empower the sustainment community to adopt advanced additive manufacturing technologies, improving rapid part replacement/maintenance for legacy aircraft, enabling on-demand replacement of critically damaged or obsolete components, and reducing the cost and lead time to fabricate replacement components.” 

The goal of this project is to prove out and accelerate Composite-Based Additive Manufacturing (CBAM) technology and to build a body of CBAM knowledge for today’s non-critical part replacements. Non-critical parts of interest include electrical connectors, instrumentation knobs, wiring harnesses and small brackets. CBAM will also assess how other part families of similar size, shape, criticality and function can be manufactured.

UAMMI’s additive manufacturing team will manufacture the legacy aircraft parts at the Utah Science Technology and Research Initiative (USTAR) Innovation Center (Salt Lake City, UT, US) using a state-of-the-art carbon-based 3D printer that will be provided by project partner Impossible Objects (Northbrook, IL, US). Testing of the parts will be conducted by additional project partners, the University of Utah’s Utah Composites Lab (Salt Lake City, UT, US) as well as the Ogden Air Logistics Complex (Hill Air Force Base, UT, US).



  • Composites 101: Fibers and resins

    Compared to legacy materials like steel, aluminum, iron and titanium, composites are still coming of age, and only just now are being better understood by design and manufacturing engineers. However, composites’ physical properties — combined with unbeatable light weight — make them undeniably attractive. 

  • Ceramic-matrix composites heat up

    Lightweight, hard and stable at high temperatures, CMCs are emerging from two decades of study and development into commercial applications.

  • A hidden revolution: composite rebar gains strength

    Fiber-reinforced plastic (FRP) replacing coated steel in more reinforced-concrete applications.