CW Blog

Celebrate National Composites Week, August 26-30

This is the inaugural year for National Composites Week, which celebrates the ways in which composites enable innovations in a wide range of industries. The celebration takes place August 26-30 of this year and will be the last week of August each calendar year.

National Composites Week was launched through a collaboration between braiding specialist A&P Technology (Cincinnati, Ohio, U.S.), global advanced composites company Hexcel (Stamford, Conn., U.S.) and CompositesWorld.

Read More

Vertical Layer Printing (VLP) at first sounds counterintuitive. This new 3D printing strategy developed by Thermwood makes use of the company’s Large Scale Additive Manufacturing (LSAM) system, but instead of putting down layers of material that are parallel to the floor, VLP literally turns the process on its side. A print head oriented at a right angle to the extruder deposits material in layers perpendicular to the floor, onto a vertical print bed.

The main benefit to printing this way is size. The LSAM’s print envelope is 10 feet wide and can be 20 to 100 feet long, but is only 5 feet high. That limits the size of parts that can be manufactured in one piece with a horizontal print bed, says Jason Susnjara, vice president of marketing.

Read More
Advancing additive manufacturing to exploit anisotropy

Founded in 2014 by CEO Fedor Antonov, Anisoprint (Esch-sur-Alzette, Luxembourg) is one of a growing number of technology companies advancing 3D printing of composites with continuous fiber. It prefers, however, to be known as a pioneer in moving additive manufacturing (AM) away from metals to composites.

“The directional properties of composites are an advantage, not a drawback,” says Antonov. “Unidirectional carbon fiber composites are stronger and lighter than metals. Conventional manufacturing and metals-based AM consider composites’ directional anisotropy as a drawback that needs to be mitigated. But Anisoprint’s approach exploits this anisotropy, orienting and placing fibers to precisely meet structural loads, significantly reducing part weight while retaining high strength and stiffness.”

Read More