CW Blog

As manufacturers seek to reduce the cost of composite components, designers strive to use constituent materials as efficiently as possible while enabling automated production and integration of multiple functions. For automotive applications, this challenge is exacerbated by the need for cycle times as short as 1-2 minutes.

Overmolding — injection molding thermoplastic composite features on top of continuous fiber preforms — has been pursued as a possible solution for years. For example, the CAMISMA project demonstrated an overmolded composite seat back in 2014 (see “CAMISMA’s car seat back: Hybrid composite for high volume”). “But this approach has been taken to the next level, now achieving fully automated production of thermoplastic composite BIW [body-in-white] structures,” explains Dr. Christoph Ebel, head of SGL Carbon’s (Wiesbaden, Germany) Lightweight & Application Center (LAC, Meitingen, Germany).

Read More

Cevotec displayed a demonstrator section of a major engine nacelle component, made in cooperation with and for SAFRAN Nacelles. This part illustrates how Fiber Patch Placement (FPP) can drastically reduce multi-material lay-up of a 3D-shaped aerospace sandwich component. “These components in aerospace industry find their main applications in winglets, stabilizers (horizontal and vertical), flight control surfaces, radar domes, aerodynamic fairings and nacelle structures,” says Cevotec CTO Felix Michl.  “Today, the continued push is to make these structures more efficient, lightweight yet resilient to meet the industry’s continuous strive for emissions reduction and greener aircraft.” However, in the production of such parts, the geometric complexity and the multi-material mix can pose a particular challenge. Layup typically requires multiple time-consuming manual work steps. Cevotec’s SAMBA Multi has now successfully demonstrated automation of these steps for complex sandwich structures in a single production system. The SAMBA Multi systems accomplish this by using parallel feeding units for different materials, which are then precisely cut and placed on 3D sandwich cores or lay-up molds with a variety of inline quality assurance checks. Larger components are also possible using an optional linear axis and adaptive gripper sizes.

Read More

CW has covered several new aerostructure fabrication innovations unheard of a decade ago. Joining those now is a demonstrator wing skin project, unveiled at JEC World 2018, that also breaks new ground. The project is a result of collaboration between Danobat (Elgoibar, Spain) and Airbus Defense and Space (Airbus DS, Cadiz, Spain) and comprises a composite wing skin fabricated using Danobat’s high-speed Automated Dry Material Placement (ADMP) technology, which is well known for rapidly laying wide multiaxial and broadgoods preforms for infusion in wind blade and aerospace manufacturing. The wing skin development partners agreed to share some of this breakthrough project’s details with CW.

Almost all aerostructures are made today with prepreg materials, which require autoclave cure. But a definite trend is emerging that aims to get aerostructures out of the autoclave. That’s the premise behind the wing demonstrator, says Asier Gandarias Mintegi, Danobat’s manager of composites business development: “Our goal is to show the feasibility of manufacturing aircraft components by means of fully automated, dry, multiaxial non-crimp fabric deposition, to achieve disruptive high production rates.”

Read More

Recently CompositesWorld visited Composite Advantage LLC (Dayton, Ohio, U.S.) for a tour of its facility. The company supplies engineered fiber reinforced polymer (FRP) products including bridge decks, trail bridges, cantilever sidewalks, rail platforms, as well as waterfront structures such as fender protection systems, pilings and naval ship separators.

CW has reported on Composite Advantage’s projects for some time, and was thrilled at the opportunity to check out the facility. At the time of the visit, the company was working on FRP bridge deck panels for a project for the Nevada Department of Transportation’s (NDOT) which will create more than 30 miles of shared-use path along Lake Tahoe. (The project is discussed in detail in a blog post by Composite Advantage.)

Read More

By: Karen Mason 2. April 2019

Spar forming simplified

“Innovation Systems” seems an apt moniker for Northrop Grumman’s (Falls Church, Va., U.S.) newest business sector. Formerly Orbital ATK, the business claims a rich history of new technologies for aerospace composites manufacturing — technologies that have increased part consistency and accelerated production speeds by automating fabrication processes. One of the most recent innovations developed by Northrop Grumman Innovation Systems’ (NGIS) Aerospace Structures Division extends an existing manufacturing method for aerospace stiffeners to the fabrication of spars and other wider, thicker components with more complex geometries.

When one of NGIS’s predecessor companies (Alliant Techsystems) developed the patented Automated Stiffener Forming Machine (ASFM) back in the early 2000s, the technology easily raised the bar for both quality and cycle time; it was the first automated composite stiffener fabrication process to replace hand layup. The Automated Stiffener Forming (ASF) process, which makes both linear and radial airframe structures, achieves superior compaction and repeatability at production rates nearly 10 times that of the traditional hand-layup process. The advantages ASFM offered were quickly recognized, and the company landed multiple contracts with aerospace OEMs, including Airbus, to which the company shipped its first ASFM-built components in mid-2010. Using ASF and automated material preparation production lines, NGIS currently produces approximately 33 kilometers of A350 XWB composite components per month based on a build rate of 10 aircraft, and has the capacity to produce more than 40 kilometers per month. As of January 2019, the company has completed more than 250,000 composite parts in support of the A350 XWB program.

Read More