CW Blog

Bio-based resin systems are not new to composites manufacturing. In fact, bio materials have been used as feedstock in some resin systems for more than a decade, starting with soybean oil and corn ethanol used in unsaturated polyester and progressing to sugar cane, lignin, vegetable oils, glycerols and other plant-based biomasses. Such materials have been marketed primarily as greener alternatives to traditional hyrdrocarbon-based resins, designed to reduce the carbon footprint of the final product in which they are used. However, despite their wide availability, bio-based resins have struggled to displace their petroleum-based predecessors. That is starting to change, however, and evidence of this can be found in the automotive composites market.

This is where DSM Engineering Plastics (Geleen, The Netherlands) finds itself with its EcoPaXX PA 410, a bio-based polyamide that has been certified as carbon neutral, thanks in the main to its being 70% derived from the castor oil bean plant. This resin is available in a number of glass fiber- and carbon fiber-filled versions, as well as in a line of unidirectional (UD) tapes that are targeted toward automotive parts. The automotive environment is a good fit with the polymer’s high-temperature stability, enhanced hydrophobicity compared with other polyamides, and superior oil and chemical resistance.

Read More

Happy New Year!

It’s early January and a time to reflect upon the past year while looking ahead to 2019. As we look back, here’s a list of the most viewed articles on the CompositesWorld website in 2018. 

Read More

Editor’s note: CompositesWorld senior editor Sara Black, the magazine’s longest tenured employee, is retiring at the end of February. I asked Sara, as she says good bye, to reflect on her two decades of working in and writing about the composites industry. Below are Sara’s parting words. She will be missed. — Jeff Sloan, editor-in-chief

Well, I’ve come to the end of the road here at CompositesWorld, and will be officially retired next month — although you might see my byline now and again as a contributing writer. How did nearly 20 years come and go so quickly? I got this job through a newspaper ad in the summer of 1999 and was lucky enough to figure out what “the glue and the string” meant, at least for simple applications. Eventually I was able to cobble words together in the magazine’s style. I had never interviewed anyone before, so that took some courage to do, and to learn. An early lesson: Shut up and listen and use a small pocket tape recorder, then transcribe the tape.  

Read More

In a lot of industries, the aphorism “garbage in, garbage out” is a reliable maxim. If your inputs are of poor quality or little value, your final products will probably be as well. However, the automotive industry is turning that adage on its head by repurposing waste materials normally considered to have no use into functional, beautiful and valuable automotive parts for vehicles already on the road. In doing so, automotive companies are keeping materials out of landfills and waterways, providing jobs in distressed communities and giving farmers another income stream, all while reducing part weight and cost, stabilizing long-term material prices, and greening their vehicles. This is a good example of another saying: “One man’s trash is another man’s treasure.”

A lot of these repurposed waste materials are the agricultural by-products of food production. They’re generally the outer wrappings of crop plants, such as tomato skins from ketchup production or agave fiber from tequila production. These inedible wrappings (often from seeds) are the parts of plants that either will not compost or will not compost easily, and that have little or no utility as animal bedding. Their lack of utility causes these wrappings to accumulate in waste piles where they can prove a nuisance or, if ignored long enough, become a health and safety challenge. However, these fibrous outer wrappings are proving to be useful as natural fiber reinforcements for a variety of composites.

Read More

Any educational institution that has developed a specialized area of study — engineering, history, art, medicine — likely can trace its genesis back to a person who supplied a great deal of personal dedication and passion to help bring that specialization to life. More often than not, that person is an educator, and someone who sustained that dedication over many years, in the process drawing the students and acolytes who built the critical mass necessary to make the program self-sustaining.

The composites industry, which is itself relatively young, has had only a little time to develop such specialization at colleges and universities. Still, throughout the world, there is now a healthy handful of strong composites engineering programs that are turning students into composites manufacturing professionals.

Read More