CW Blog

Visit the news pages of the Airborne Oil & Gas (AOG, IJmuiden, Netherlands) and Magma Global Ltd. (Portsmouth, U.K.) websites and you’ll come away with the impression that 2018 was a watershed year for these two leading manufacturers of thermoplastic composite pipe (TCP) for deep-sea applications. But don’t be surprised if 2019 news about this burgeoning market for composites eclipses that of the preceding year.

A few notable achievements of 2018 for AOG: In June, the company commenced a qualification program for carbon fiber/polyvinylidene difluoride (PVDF) risers (pipes connecting subsea production systems and surface production vessels) for a major operator in South America. AOG worked in collaboration with Subsea 7 (Luxembourg), a major offshore installation contractor, on this project. In August, after an extensive five-year qualification program followed by the world’s first pilot installation on hydrocarbon (full well bore) service of a glass fiber/high-density polyethylene (HDPE) flowline (pipe that connects the well head to further processing equipment), Petronas (Kuala Lumpur, Malaysia) recognized AOG’s TCP flowline as having achieved technology readiness level 6 (beta prototype verification). “And we expect to reach TRL 7 [pilot system demonstration] in 2019,” reports Martin Van Onna, AOG CCO. Along with these successful qualifications and pilot programs, AOG reports a growing commercial track record, especially with its glass fiber/HDPE TCP.

Read More

Recyclability has been a long-promised benefit of using thermoplastic composites (TPCs). But it has yet to be used commercially on a large scale. Materials supplier TenCate Advanced Composites and the ThermoPlastic composites Research Center (TPRC) partnered with Tier 1 manufacturer GKN Fokker to demonstrate such a process in 2016. The team developed an access door panel using scrap TenCate Cetex TC1100 woven carbon fiber/polyphenylene sulfide (CF/PPS) material from GKN Fokker’s production of the Gulfstream G650 elevator and rudder. The production waste was chopped and then compression molded using a process and mold designed by TPRC. The access door panel featured molded stiffening ribs, thickness variations and molded-in holes with bosses. (A boss is a protruding feature that guides a fastener into the hole). Use of the reclaimed material enabled a lightweight part with greater molded-in functionality while forming a closed-loop manufacturing process, as the access door panel was then used on the leading edge of the Gulfstream G650 rudder. The project won a JEC Innovation Award in 2016.

Access door panel demonstrated in 2016 is made from scrap Cetex CF/PPS material and features stiffening ribs and molded-in holes with bosses. SOURCE | TPRC.

Read More

Many new technologies have been developed recently to reduce the cycle time and cost of composites, with the aim of increasing composites’ use in automotive, industrial and consumer goods applications. One of the most promising areas of development is in automated production lines that cut and place thermoplastic prepreg tape to form tailored blanks, and then convert these into parts using compression molding and injection overmolding. Companies active in this development include Airborne (The Hague, Netherlands), Van Wees UD and Crossply Technology (Tilburg, Netherlands) and the French engineering and advanced manufacturing R&T organization Cetim (Nantes, France). The latter unveiled its Quilted Stratum Process (QSP) in 2015. QSP can produce complex-shaped parts with a production line pulse-time of 40-90 seconds.  For example, using QSP, an omega-shaped profile molded into an L-shaped beam integrates 13 patches of 1.5-, 2- and 3-millimeter thick organosheet (woven fabric thermoplastic prepreg) and UD tape into a 6-millimeter-thick part with a cycle time of less than 77 seconds per part.

However, to take advantage of automation technology such as QSP, engineers must develop design and optimization methods that can evaluate many theoretical combinations of partial plies and the corresponding variation in the number, thickness, position and composition of plies (for example, reinforcement type and fiber orientation). With this in mind, Cetim has combined its experience in composites structural analysis, nondestructive testing (NDT) and manufacturing with the expertise of ONERA (The French Aerospace Lab) in advanced optimization methods used for years in the aerospace industry. The result is QSD, a tool now available in Altair Engineering’s (Troy, Mich., U.S.) HyperWorks computer-aided engineering (CAE) software. It is basically an optimization add-on that helps to design composite parts made using tape- and organosheet-based processes and to control their cost, including how to reuse production scrap for zero-waste, closed-loop manufacturing.

Read More

BMW Group (Munich, Germany) is once again redefining transportation, this time with its Personal Mover Concept, an electrically powered mobile platform designed to carry a person and light cargo over short distances within operating sites as diverse as manufacturing facilities, airports or even theme parks. The unit, which is versatile, maneuverable, tilt-proof and clean-powered, can be used inside or outside of buildings and, most importantly, has been designed to be fun yet safe to drive.

The genesis of this project was the realization that many of the automaker’s plants and logistics centers are sprawling campuses where employees can walk up to 12 km/day while carrying small parts and other work materials as part of their jobs. To make it easier and more efficient for employees to move around, BMW experts drawn from the Research & Technology House in Garching, Germany, and the central aftersales logistics network at Dingolfing, Germany, took up the challenge to create a mobility solution for their colleagues at other BMW facilities.

Read More

Automated preforming of thermoplastic tapes and subsequent hybrid molding — thermoforming and injection overmolding ribs, clips and bosses onto part surfaces — have been heralded as the future for composites manufacturing in high-volume applications such as automotive. But what if it was possible to combine the toughness of thermoplastics and functionality of injection molded features with the high performance of carbon fiber-reinforced epoxy parts?

This is what the three-year project OPTO-Light, which ended in 2018, set out to answer. It was funded by Germany’s Federal Ministry of Education and Research (BMBF) as part of its strategy to develop photonics — light-based technology such as lasers — for mass production of lightweight constructions. The project was awarded to the Aachen Center for Integrative Light Construction (AZL) at RWTH Aachen University (Aachen, Germany), which provides a single campus for companies to collaborate with eight research institutes to develop lightweight materials, production technologies and applications.”

Read More