CW Blog

Composites manufacturing is notoriously varied. The mix of resin, fibers and processes creates a vast universe of manufacturing options that can be difficult to track and quantify. That said, such tracking and quantifying is worth doing, if only to help establish for the composites industry some baseline data regarding operations efficiency.

With that in mind, CompositesWorld, in cooperation with Gardner Intelligence, has launched the CW Top Shops benchmarking survey, designed to help composites manufacturing operations like yours measure and assess how well they compare to other composites manufacturers.

Read More

When approaching the design for an athletic shoe — or for sports equipment in general — performance is key. Numerous factors make up a performance shoe, and the requirements vary by shoe function; running shoes have different requirements than basketball shoes, for example. Running shoes are light and flexible and designed to cushion and stabilize for a long run, while basketball shoes are designed to provide ankle stability and absorb shock during sudden changes in direction. How a running shoe allows a runner to land and push off for each step is a subject of constant evaluation for engineers as new technologies emerge. High-performance materials such as carbon fiber can help provide stiffness without adding a lot of weight in such parts of a shoe as the midsole, toe kick and shank (a supportive structure in the shoe that runs beneath the arch of the foot). 

Chinese sportswear startup Bmai (Beijing, China) had the goal of making a high-performance marathon shoe at a price that everyday consumers can afford, but it wanted to take advantage of carbon fiber’s light weight and stiffness.

Read More

“Mass production” is a term not generally associated with complex composite components that feature continuous, aligned fiber reinforcement, yet composites technologists have long pursued this elusive combination. After all, the market potential is exceptionally large, especially in the automotive industry, for cost-efficient, high-volume, high-performance composite components.

With the exception of components pultruded into very simple profiles, this market potential has not been realized with today’s manufacturing technologies. Composites manufacturers either mass-produce complex composite components made with chopped fiber, or they use relatively low-volume fabrication technologies to make such components with continuous, oriented fiber reinforcement. Though maturing technologies like automated fiber placement (AFP) and continuous-fiber 3D printing are accelerating cycle times, they have not reached mass-production levels for complex high-performance composite components.

Read More
3D printing continuous fiber on the desktop

 

Desktop Metal (Burlington, Mass., U.S.), a company that specializes in metal 3D printing for product development and mass production, has announced it will expand its technology to include the composites community. Desktop Metal was founded in 2015 with a mission “to make 3D printing accessible for all engineers, designers and manufacturers,” and since then the company has brought two 3D printing technologies to market — its office-friendly metal 3D printing Studio System and its high-volume Production System metal 3D printer, which is capable of printing speeds up to 12,000 cm3/hr. Now, the company is unveiling what it says is the world’s first true continuous fiber desktop printer.

Read More