CW Blog

While it’s not the first transportation segment most people think about as a growing market for composites, perhaps agricultural equipment should be and, in time, will. After all, as human populations increase across the planet, more resources will be needed to grow the plants and livestock to feed us. Despite a century of horrific wars and some significant international plagues, human populations managed to grow 400 percent during the 20th century. Today’s world population is 7.6 billion, and the United Nations (New York, N.Y., U.S.) projects that another billion will be added by 2030, still another by 2050, and that by 2100, the world population will be 11.2 billion. As agriculture grows, equipment market will grow, too.

Currently the agricultural equipment industry is geographically fragmented, with only a few global OEMs building at the industry’s highest production volumes — and these are generally still lower volumes than even the heavy truck industry. However, a constellation of trends — including land consolidation in the Americas, tougher fuel efficiency and emissions standards for diesel-powered vehicles in many geographies, the complex issue of weight reduction, greater interest in the use of design differentiation as a marketing tool, and changes in how backward-integrated machinery OEMs are still in metals — has led to more and larger components being converted to composites using a broader array of materials and processes. As those trends gain traction, it’s not hard to envision a time when agriculture equipment could become a major market for composites.

Read More

Composite materials and innovations are constantly evolving. In addition to industry news, features, blog posts and podcasts, CW also maintains a comprehensive collection of product announcements provided by companies. This roundup includes links to regular posts concerning the latest products of interest to the composites industry.

Recent innovations include:

Read More
More details on MAI Skelett design process

The CW April 2019 feature “Skeleton design for more competitive composite auto structures” discusses the “skeleton” design approach of using thermoplastic overmolded composite pultrusions to improve material efficiency, cycle time and cost in automotive structural components. The windshield frame component highlighted is a demonstrator designed and fabricated as part of the MAI Skelett project, completed by MAI Carbon, a regional division of the Carbon Composites e.V. (Augsburg) network, and led by BMW (Munich, Germany). During my research for this article, I was able to study the project’s final report. This blog is a summary, including aspects that I found particularly interesting.
 

This project ran from the beginning of 2014 to mid-2015. Partners included BMW, CirComp (Kaiserslautern) for pultrusions, Eckerle (Beilngries) for injection molding and tooling, P+Z Engineering (Munich) for simulation and design optimization and SGL Carbon for materials.

Read More

Tape-slitting specialist Bindatex (Bolton, U.K.) showed at its stand a 1-millimeter-wide carbon fiber/PEEK tow it had slit for a 3D printing application. The company has recently moved into a new 8,000-square-foot plant north of Manchester, U.K., and is working on slitting technologies for thermoset and thermoplastic tapes, including some dry fiber slitting.

Fill Gesellschaft GmbH (Gurten, Austria) attracted much attention with its new Multilayer 16-8/50, a multi-creel tape laying machine for high-volume automotive and aerospace applications. The machine features up to 16 side-by-side, rail-mounted creels, each one laying down 50-millimeter-wide tapes on a table that offers x, y and z motion capability.

Read More

The Center for Composite Materials (CCM) at the University of Delaware (Newark, Del., U.S.) introduced at JEC a new fiber-based product called TuFF (Tailored Universal Feedstock for Forming), which is designed to integrate short fibers (particularly those from recyclate) into a 20-inch-wide unidirectional (UD) sheet. The novelty of TuFF is that CCM has developed a process whereby 95 percent of the short fibers in this UD material are aligned within ±5 degrees. John Tierney, senior scientist at CCM, says TuFF can integrate any fiber type with any resin type, but admits that most of CCM’s work has focused on use of carbon fibers and polyetherimide (PEI) resin. Features of the material include fiber volume fraction of 63 percent, equivalent properties compared to continuous IM7/8552 (well-known Hexcel carbon fiber/epoxy prepreg), 40 percent biaxial in-plane stretch, and easy and fast formability (~1 minute). Thin-ply formats are available, as are dry preforms and consolidated blanks, all in a variety of areal weights.

Parts on the CCM stand at JEC (see photo), made via rapid vacuum-forming, showed that TuFF offers good, homogenous stretching with minimal perimeter pulling or separation of material. “It behaves like metal in terms of material and processing,” says Tierney, adding that the material is adaptable for automated fiber and steered tape placement as well as material source for 3D printing/additive manufacturing. In addition, he notes that the use of thermoplastic resins makes TuFF easily recyclable. The team will present a number of papers on this new material technology at the upcoming SAMPE conference in Charlotte with TuFF materials on display in booth N42. The research that led to the development of TuFF was funded by the U.S. Defense Advanced Research Projects Agency (DARPA).

Read More