Airtech
Published

Isoco, V Frames, Lehvoss introduce recycled, biopolymer composites to bike frames

Bio-based, performance-optimized composite materials promote more lightweight, stiff and impact resistant E-bike frames and components.  

Share

V Frames injection molding tool for bike components. Photo Credit: V Frames

Isoco Bikes (Saalfeld, Germany), an E-bike manufacture producing high-performance injection-molded carbon fiber bike frames, and plastic fabrication company V Frames (Schmiedefeld) have signed an exclusivity agreement with Lehvoss Group (Hamburg) to introduce high-performance fiber-reinforced compounds, including long carbon fiber and biopolymer carbon fiber composite materials, into bike frame and component production.

Per the agreement, V Frames expects to enter mass production of injection-molded carbon fiber composite frames, forks, cockpits and other components for several OEMs by 2027, targeting volumes of 1 million components produced at the Isoco plant in Schmiedefeld, Thuringia. After this, the primary focus is to increase the performance of raw materials to achieve future frames that are more lightweight, impact resistant and feature an increased elastic modulus of up to 50,000 MPa long term (compared to the current 32,000 MPa), further increasing stiffness.

V Frames claims that it already produces some of the most sustainable bike frames on the market, reducing the carbon footprint by 64% compared to traditional aluminum frame production according a life cycle analysis (LCA) performed by the University of Linz, Austria. 

V Frames and Lehvoss focus on compounds containing recycled fibers from different industries for new frames, and then recycle its products 100% at the end of their lifetime into new bike component products, providing complete circularity. Production is located in Germany. Isoco’s current production capacility is around three million frames per year. 

“Lehvoss is an excellent partner for the development, production and testing of high-performance materials,” Managing Director Michael Müller explains. “With these steps we could push the limits of our technology to new levels. As an example, the Buddy Electric/Isoco X1 frame passed the falling mass test with 23 kilograms at a drop height of 1,120 millimeters, a level far beyond the maximum test requirements of any institute and unreachable by most aluminum and traditional carbon [fiber] frames.”

He says the material used for these high-performance frames is now available for third parties. Additional materials are now being developed and in testing, such as what is contended to be the world’s first bio-based long carbon fiber material for water injection technology [WIT] assisted injection molding.

“Together, we now also push the limits of environmental sustainability with introducing bio-based polyamides reinforced with carbon fibers,” Müller continues. “We are excited to show the results of the new materials in the performance of our frames and components in the next months and years. The approach of V Frames is to provide the perfect material for any frame geometry, any component developed by V Frames, tailor made.”

The new materials introduced in the market under this cooperation consist of:

  • Bio-based long carbon fiber materials for WIT injection molding.
  • Bio-based polyamides (PA) reinforced with short carbon fibers.
  • Economical-, ecological- and performance-optimized materials based on PA, carbon fiber and glass fiber compounds.

All materials developed and tested in the cooperation are available for purchase. For details please contact V Frames and Lehvoss. Material data sheets are available on request.

Coast-Line Intl
Airtech
re-engineered the ORPC foil and strut
sustainable carbon fiber composites​
CompositesWorld
hybrid additives
Coatings for Carbon Fiber from Keyland Polymer
Airtech
SikaBlock® M974
pro-set epoxy laminate infusion tool assembly
Advanced Nonwovens for Aerocomposites - TFP
NewStar Adhesives - Nautical Adhesives

Related Content

Marine

The lessons behind OceanGate

Carbon fiber composites faced much criticism in the wake of the OceanGate submersible accident. CW’s publisher Jeff Sloan explains that it’s not that simple.

Read More
Aerospace

Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.

Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.

Read More
Filament Winding

Carbon fiber in pressure vessels for hydrogen

The emerging H2 economy drives tank development for aircraft, ships and gas transport.

Read More
Natural Fibers

Materials & Processes: Fibers for composites

The structural properties of composite materials are derived primarily from the fiber reinforcement. Fiber types, their manufacture, their uses and the end-market applications in which they find most use are described.

Read More

Read Next

Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Pressure Vessels

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Airtech International Inc.