Kraussmaffei Metering Systems
Published

CompoTech launches standard range for carbon finer epoxy beams

Produced via AFP and precision press molded results in a high-strength carbon epoxy composite beam with 10-15% higher stiffness in the axial direction.

Share

Standard connected beam

Standard connected beam used for T-boom applications in press shop manipulation. T-joint and attachments are made by bolting to the inserts placed in the corners of the profile. Source | CompoTech

CompoTech (Sušice, Czech Republic) has recently launched a new standard range of lightweight carbon finer (CF) epoxy composite beams in round tubes and square-shaped options and sizes, which can be specified instead of steel.

CompoTech says the standard square beams are produced from graphite and PAN carbon fibers using its automated robot-assisted filament placement technique, which places continuous fibers axially along the beam length. The result is a high-strength carbon epoxy composite beam with 10-15% higher stiffness in the axial direction and up to 50% greater bending strength compared to a conventional filament wound beam with the same dimensions. 

All CompoTech beams are produced with automated filament placement (AFP) and precision press molded using a wet, two-part epoxy resin system. Curing is a two-stage process, first at room temperature to remove any residual stresses during molding that can cause deformation over time, then post mold curing in an oven. Compared with pultrusion, CompoTech says, its pressing technique provides a precision CF epoxy beam with very high dimensional accuracy and a close tolerance surface finish, which typically does not require costly CNC finish machining.

According to CompoTech, its carbon composite beams have enabled modular industrial tooling system producers, such as Bilsing Automation GmbH (Attendorn, Germany), to replace much heavier steel and aluminum beams, providing significant production benefits such as faster operating speeds and higher productivity; less vibration and more rapid damping; heavier load handling capabilities on the same line; lower energy consumption and lifetime operating costs; and easy assembly for structures needing bolted connections. 

CompoTech winding of a graphite and PAN carbon fibre epoxy square beam.

CompoTech winding of a graphite and PAN carbon fiber epoxy square beam. Source | CompTech

Successful applications in the aerospace, agricultural, automotive, metrology, marine and sports equipment market sectors for CompoTech products include industrial machine tool beams; drive shafts; automated automotive press line T-booms, structural frames and crossbars; crop sprayer booms; aerospace structures; yacht masts and spars; and composite bike frames.

The choice of standard square beam options includes hollow cornered ‘bolt together’ connector beams to extend length, and beams designed with reinforced corners for added stiffness, damping and load bearing performance. 

Standard square beams are available in sizes from 60 x 60 x 5mm wall thickness, weighing 1.7 kg/m, with an E (elasticity) Modulus in the axial direction of 196 GPa, up to the largest beam 200 x 200 x 8mm, weighing 4.19kg/m, with E Modulus of 210 GPa, matching tool steel.  The stiffest design achieves an E Modulus of 327 GPa, which is said to be 69% stiffer than stainless steel (193 GPa) and 56% stiffer than tool steel (210 GPa).  Square beam lengths vary from between 2.3-5.0m depending on the size.

Standard CF epoxy round tubes, which have an E Modulus of 90 GPa, are manufactured using PAN carbon fibers.  Tubes are available in sizes from a 428mm inside diameter x 4mm wall thickness, weighing 6.92 kg/m down to 10mm inside diameter x 2mm wall thickness, weighing only 0.11 kg/m. Standard tubes lengths are between 3.6-7.8m, depending on the diameter.     

Both standard tubes and square beams are available in quantities from one-off to multiple batch orders. On request, CompoTech says it will look to add additional sizes to the standard round and square beam ranges, as well as continuing to offer its bespoke design and manufacturing service for industrial beams and other CF composite components to meet specific customer requirements.         

Master Bond
TOPCON24
custom hydraulic press
Toray Advanced Composites
Kent Pultrusion
U.S. Polychemical Acrastrip
Wabash
CAMX 2024
Keyland Polymer
A manufacturing puzzle
industrial CNC routers
Airtech

Related Content

Composite rebar for future infrastructure

GFRP eliminates risk of corrosion and increases durability fourfold for reinforced concrete that meets future demands as traffic, urbanization and extreme weather increase.

Read More
Hi-Temp Resins

Plant tour: Qarbon Aerospace, Milledgeville, Ga. and Red Oak, Texas

Veteran aerostructures Tier 1 transforms into 21st century leader in thermoplastic composites and multiple new markets.

Read More
Carbon Fibers

Cycling forward with bike frame materials and processes

Fine-tuning of conventional materials and processes characterizes today’s CFRP bicycle frame manufacturing, whether in the large factories of Asia or at reshored facilities in North America and Europe. Thermoplastic resins and automated processes are on the horizon, though likely years away from high-volume production levels.

Read More
Aerospace

One-piece, one-shot, 17-meter wing spar for high-rate aircraft manufacture

GKN Aerospace has spent the last five years developing materials strategies and resin transfer molding (RTM) for an aircraft trailing edge wing spar for the Airbus Wing of Tomorrow program.

Read More

Read Next

Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Pressure Vessels

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Thermoplastics

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Kraussmaffei Metering Systems