Need for standardization in composites manufacturing
CW Talks is “on” and already proving to be well worth a listen.
CW Talks: The Composites Podcast is up and running. If you have not yet listened in, you can give it a try at www.compositesworld.com/podcast, or via iTunes and Google Play. We have recorded seven episodes, thus far, talking to a variety of people who represent a variety of interests in the composites industry. Our discussions have ranged widely, covering many topics, depending on the interviewee’s background and composites expertise.
I was, therefore, somewhat surprised, recently, when three CW Talks interviewees brought up the same subject in response to my question about challenges facing the composites industry and how they might be addressed.
The challenge each mentioned? The need for standardization in composites manufacturing.
Notably, the three in question represent diverse industry segments: Greg Mark, founder and CEO of 3D printer manufacturer Markforged; James Austin, CEO of technical fabrics manufacturer North Thin Ply Technology (NTPT); and Frazer Barnes, managing director of carbon fiber recycler ELG Carbon Fibre Ltd.
Before I tell you what they said, a little background about standardization. If you know even a little bit about composite materials, you know that they are famous for their ability to provide engineered solutions to many manufacturing challenges. This is thanks primarily to the many combinations of resins, fibers, tooling, and manufacturing processes available. The bespoke nature of these engineered solutions is a blessing and a curse — a blessing because of composite materials’ high adaptability, and a curse because of the extreme complexity that results, making it difficult for non-composites engineers and designers to understand and use the material effectively. In fact, materials standardization, it is argued, would help reduce that complexity and make adoption of composite materials easier and quicker.
This idea was first raised in my CW Talks conversations by Mark (Markforged), who described market reaction when he first introduced the Mark One, his 3D printer that applies continuous carbon fiber reinforcement in a thermoplastic resin matrix. Discussions about the Mark One revolved around the anisotropic nature of the material, which Mark says was readily understood and appreciated by a vast majority of attendees at the composites tradeshows where Markforged exhibited. But at noncomposites tradeshows, Mark says many engineers he spoke to, although they understood the words he was saying, could not wrap their minds around anisotropic material properties. As a result, they had difficulty immediately understanding the benefit or application of a 3D printer that applies continuous carbon fiber reinforcements. Which means, in essence, they had difficulty understanding composites.
For Austin (NTPT) and Barnes (ELG), their calls for standardization grew out of a simple question: What’s required of the composites industry to help speed maturation and adoption? Austin lists innovation and cost as his top two challenges, but follows with this: “A piece of the industry that is still missing is a standardization of materials. And I think half the industry is with me on that and half the industry is not with me.” Austin notes that metallic alloys are already standardized, which makes them easy to specify. And although composite materials might not be standardizable in the same way, they can be standardized in some way. He says, “Whilst the world is not overburdened with highly refined and skilled composite engineers, the rate of uptake is, I think, limited . . . and standardization is one way through that.”
For Barnes, material standardization would be at the top of his to-do list, were he named CEO of the composites industry for a year, and he also draws a correlation with cost: “Every material we treat as an individual material. We don’t have standard grades . . . and that brings a lot of cost in initial evaluation and characterization.” And then, echoing Mark and Austin, he says, “We need to make this material easier to use by people who may not be composites experts.”
This last point is a difficult one against which to argue, particularly for an industry starved of engineering talent. Standardization, perhaps, deserves serious consideration.
Related Content
Otto Aviation launches Phantom 3500 business jet with all-composite airframe from Leonardo
Promising 60% less fuel burn and 90% less emissions using SAF, the super-laminar flow design with windowless fuselage will be built using RTM in Florida facility with certification slated for 2030.
Read MoreLow-cost, efficient CFRP anisogrid lattice structures
CIRA uses patented parallel winding, dry fiber, silicone tooling and resin infusion to cut labor for lightweight, heavily loaded space applications.
Read MoreDevelopment of a composite liquid hydrogen tank for commercial aircraft
Netherlands consortium advances cryogenic composites testing, tank designs and manufacturing including AFP, hybrid winding, welding of tank components and integrated SHM and H2 sensors for demonstrators in 2025.
Read MorePlant tour: Collins Aerospace, Riverside, Calif., U.S. and Almere, Netherlands
Composite Tier 1’s long history, acquisition of stamped parts pioneer Dutch Thermoplastic Components, advances roadmap for growth in thermoplastic composite parts.
Read MoreRead Next
Cutting 100 pounds, certification time for the X-59 nose cone
Swift Engineering used HyperX software to remove 100 pounds from 38-foot graphite/epoxy cored nose cone for X-59 supersonic aircraft.
Read MoreNext-gen fan blades: Hybrid twin RTM, printed sensors, laser shock disassembly
MORPHO project demonstrates blade with 20% faster RTM cure cycle, uses AI-based monitoring for improved maintenance/life cycle management and proves laser shock disassembly for recycling.
Read MoreCeramic matrix composites: Faster, cheaper, higher temperature
New players proliferate, increasing CMC materials and manufacturing capacity, novel processes and automation to meet demand for higher part volumes and performance.
Read More