Airtech
Published

High-performance vs. general purpose

Jeff Sloan notes the closing gap between “aerospace” and “industrial” composites.

Share

If you’re reading this editorial, it’s very likely that you are a subscriber to HPC. And if you are a subscriber to HPC, it’s very likely that you are involved in some way in the design and manufacture of composite structures for aerospace, high-performance automotive and other applications that consume continuous carbon fiber. And I know this is so because that’s the business principle under which HPC operates: We editors cater to the information needs of high-performance composites manufacturers, and suppliers that want to sell to high-performance composites manufacturers pay us for the opportunity to advertise in support of our editorial mission.

What you may not know is that we also have a sister publication, Composites Technology (CT) magazine, which targets composites professionals who serve the automotive, wind, marine, construction and infrastructure markets with the manufacture of primarily glass fiber-reinforced composite parts and structures. I’ve heard some people refer to such applications as “general-purpose.” Or, less charitably, “industrial.” Or, even less charitably, “tubs and countertops.”

For many years these two “sides” of the industry seemed like the Odd Couple — two people living under one roof, each with markedly different habits, yet oddly joined by a common interest. And despite the common interest — manufacture of fiber-reinforced polymers — there seemed to exist little that could bring these two sides closer together.

And then, a few years ago, funny things started to happen. First, the aerospace composites side, which had for so long relied on the autoclave to cure composite structures, started looking for autoclave-free options, which led it to the general-purpose world and its developing resin infusion, resin transfer molding (RTM), compression molding processes — and even to reinforced thermoplastics. Meanwhile, the general-purpose side, seeking to reduce weight even further in wind blades, marine components and automotive structures, started using continuous carbon fiber. Now, it’s much more difficult — and in many ways unfair — to define sides anymore.

Take, for instance, the BMW i3, the new, all-electric vehicle that features continuous carbon fiber composites in the passenger cell (also known as body-in-white). This is not a high-performance sports car or a Formula 1 racecar. It’s a vehicle designed for everyday urban transportation. We recently toured the BMW plant that assembles the i3 and wrote an article about it. If you were me, would you place this story in HPC or CT? It’s automotive, but a continuous carbon fiber application using RTM. We chose to publish the article in CT (and then summarize it in this issue’s “News” section), but not without some serious contemplation.

None of this should be surprising. You may not always sense it, but the composites industry is unusually and demonstrably dynamic, creative and fast-changing, so it seems inevitable to me that as it evolves, we would see people like you seeking out best practices wherever they exist. A sign of this evolution — not to mention a good place to find those best practices — is the launch, this October in Orlando, Fla., of the Composites and Advanced Materials Expo (CAMX) trade show and conference, co-hosted by SAMPE and the American Composites Manufacturers Assn. (ACMA) — previously bastions in North America of the two “sides” if you’re looking for context. It is shaping up to deliver on its promise of presenting the industry as a whole. We’ll be at CAMX, keeping tabs on the evolution, and hope to see you there.

Coast-Line Intl
Airtech
Chem Trend
Thermwood Corp.
CompositesWorld
HEATCON Composite Systems
Harper International Carbon Fiber
pro-set epoxy laminate infusion tool high temp Tg
NewStar Adhesives - Nautical Adhesives
CompositesWorld
CAMX 2024
Carbon Fiber 2024

Related Content

RTM

Materials & Processes: Fabrication methods

There are numerous methods for fabricating composite components. Selection of a method for a particular part, therefore, will depend on the materials, the part design and end-use or application. Here's a guide to selection.

Read More
Marine

Materials & Processes: Fibers for composites

The structural properties of composite materials are derived primarily from the fiber reinforcement. Fiber types, their manufacture, their uses and the end-market applications in which they find most use are described.

Read More

Hexagon Purus opens new U.S. facility to manufacture composite hydrogen tanks

CW attends the opening of Westminster, Maryland, site and shares the company’s history, vision and leading role in H2 storage systems.

Read More
Filament Winding

Voith H2 storage tanks made with in-house towpreg winding

Plug & Drive H2 storage system displayed at IAA Transportation 2022 uses 700-bar tanks for heavy-duty commercial and construction vehicles.

Read More

Read Next

Thermoplastics

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Pressure Vessels

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Chem Trend