Vectorply
Published

Hybrid carbon fiber/aluminum suspension knuckle

Yields 26% greater stiffness via bonded prepreg patch.

Share

The linking parts of a car’s or truck’s steering and suspension system directly impact the vehicle’s ride, durability and steerability. Thus, part performance here is directly related to how the driver perceives vehicle quality.

One such part is the suspension knuckle, which attaches upper and lower suspension components to a wheel support assembly and is the mounting point for the wheel spindle or hub. The two primary performance criteria for the part are stiffness and durability.

Saint Jean Industries (Saint Jean D’Ardières, France) has worked with nearby Hexcel Les Avenières — Hexcel's (Stamford, CT, US) European center of excellence for carbon fiber reinforcements — to develop a hybrid carbon fiber/aluminum version of this suspension knuckle, which increases stiffness by 26% vs. an all-aluminum knuckle.

“We received OEM requests to increase the stiffness of lightweight suspension knuckles
 for improved handling of the car,” recalls Saint Jean’s technical director Lionel Duperray. As a global supplier of parts and subassemblies for automotive, aeronautic, motorcycle, heavy truck and industrial applications, Saint Jean Industries is already a leader in lightweight solutions that use titanium, aluminum and high-strength steel. One example is its patented COBAPRESS technology, which combines casting and forging for higher performance and lighter weight in aluminum parts. “For this knuckle, we needed the weight of aluminum but the stiffness of cast iron,” Duperray explains. That’s where carbon fiber made the difference.

The aluminum/CFRP hybrid part also does not increase part volume, meeting tight package space restrictions and allowing a single part design to be used across multiple models in a vehicle series. “We could have reduced the amount of aluminum if we had designed the part from the beginning to include carbon fiber,” notes Duperray — something time and circumstances wouldn’t permit. “In this case, we used a current production part and just added carbon fiber,” he admits, but points out, “it only added a few millimeters of thickness to the part.”

This prepreg “patch” comprises multiple plies of unidirectional HexPly M77 snap-cure epoxy prepreg for automotive structures, each ply placed at a different orientation. “The loading on a knuckle is complex,” explains Duperray, “including impact and fatigue loading for durability.”

The design was developed jointly with Hexcel. “We created a finite element analysis model (FEM) in-house, but we don’t have composites expertise, so we shared our model with Hexcel. They used our design and load requirements to develop the composite ply layup using their own FEM expertise.” The prepreg patch, which also increases the knuckle’s maximum strength-before-failure, is bonded to the aluminum knuckle, using Hexcel’s new fast-curing Redux 677 epoxy film adhesive, developed for high-volume compression molding of hybrid metal/carbon fiber composite structures. He points out that the film adhesive also prevents direct contact between the carbon and aluminum to eliminate the risk of galvanic corrosion.

“We can cure the prepreg material from Hexcel quite quickly,” says Duperray, noting that Hexcel already has technology for developing and producing prepreg patches in large volume for automotive, with a typical throughput of one patch per minute. Saint Jean Industries will first make the aluminum part, using its COBAPRESS process, which already produces more than 15 million parts/yr, including knuckles. “We then wash the part to prepare the surface for bonding,” Duperray explains, “place the prepreg patch onto the part and then cure in a compression molding press at roughly 150°C, which has no effect on the microstructure of the aluminum. We can apply and cure the patch in less than 2 minutes, which easily fits our automated process cycle times for knuckles.”

Duperray says the patched knuckle is still in the pre-production phase of development. When production begins, Saint Jean will either subcontract automation to one of its suppliers or build the production line in-house. He concedes that a bonding tool is required for pressing the patch, but says it doesn’t pose a real issue. “This is the first prototype to demonstrate this process, but now it is something we understand. The cost of the bonding tool is similar to the cost we already project for casting and forging tools.” And what about the potential for this technology in other parts? “We are always exploring and developing new technologies for our customers,” says Duperray. “We think composites can help to achieve the light weight desired for the next generation of transportation vehicles.” 

pro-set epoxy laminate infusion tool high temp Tg
BARRDAY PREPREG
Harper International Carbon Fiber
Nanosilica Filled Adhesives
Renegade Material Composites
Toray public database prepreg materials
Custom Quantity Composite Repair Materials
3D industrial laser projection
Composites One
world leader in braiding technology
Thermwood Corp.
Carbon Fiber 2024

Related Content

Biomaterials

Materials & Processes: Fibers for composites

The structural properties of composite materials are derived primarily from the fiber reinforcement. Fiber types, their manufacture, their uses and the end-market applications in which they find most use are described.

Read More
Plant Tours

Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.

Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.

Read More
Aerospace

One-piece, one-shot, 17-meter wing spar for high-rate aircraft manufacture

GKN Aerospace has spent the last five years developing materials strategies and resin transfer molding (RTM) for an aircraft trailing edge wing spar for the Airbus Wing of Tomorrow program.

Read More
Defense

From the CW Archives: Airbus A400M cargo door

The inaugural CW From the Archives revisits Sara Black’s 2007 story on out-of-autoclave infusion used to fabricate the massive composite upper cargo door for the Airbus A400M military airlifter.

Read More

Read Next

Thermoplastics

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Wind/Energy

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Ready-to-Ship Composites