• PT Youtube
  • CW Facebook
  • CW Linkedin
  • CW Twitter
4/22/2019 | 1 MINUTE READ

PostProcess Technologies launches new solution for SLA resin removal

Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

PostProcess Technologies says the system is capable of performing complete resin removal on 3D-printed SLA parts consistently in 5-10 minutes.

Share

Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

PostProcess Technologies (Buffalo, N.Y., U.S.) announced March 19 a new solution for SLA resin removal as a part of its offering of automated and intelligent additive manufacturing (AM) post-print technologies. Building on its existing portfolio of SLA resin removal technologies with an enhanced chemistry formulation, the PostProcess solution is said to deliver improved processing times. PostProcess Technologies says the system is capable of performing complete resin removal on 3D-printed SLA parts consistently in 5 to 10 minutes, thereby cleaning up to 5 times as many parts before detergent saturation versus traditional solvent resin removal.

The newly developed, patent-pending PostProcess SLA resin removal solution was validated in multiple production environments with 8 different resin materials. The solution utilizes patent-pending SVC (Submersed Vortex Cavitation) technology in the DEMI and CENTI machines and proprietary AUTOMAT3D software to achieve improved processing times and end-part consistency. Software automation reportedly enables hands-free cleaning, precision control of parameters, advanced process monitoring, and proactive maintenance management.

The longevity of the PostProcess chemistry created for this solution, PG1.2, is said to provide for resin removal on up to 1000 trays (average tray size = 15") in the DEMI machine before reaching saturation. This increased longevity also is said to reduce the costs of waste disposal and machine downtime as fewer detergent change-outs are required. The PG1.2 chemistry also is said to better address health and safety concerns compared with traditional solvent solutions, offering a lower vapor pressure and higher flash point.

RELATED CONTENT

  • Moving continuous-fiber 3D printing into production

    With patents proliferating and production applications emerging, 3D printing with continuous fiber reinforcement is poised for significant market growth.

  • Fabrication methods

    There are numerous methods for fabricating composite components. Selection of a method for a particular part, therefore, will depend on the materials, the part design and end-use or application. Here's a guide to selection.

  • Three new 3D printing technologies for composites

    Fiber-reinforced composite tooling, ceramic matrix composites (CMCs) and woven fiber composites are all now the realm of 3D printing.

Related Topics

Resources