Airtech
Published

Fraunhofer Cluster of Excellence Programmable Materials CPM develops 4D printing technology

The technology adds the dimension of time (1D) to the dimension of space (3D), enabling the shape of predefined, printed polymers to be altered at a later point in time when exposed to heat.  

Share

Dilip Chalissery develops the process technology for 4D printing at Fraunhofer IAP.

Dilip Chalissery develops the process technology for 4D printing at Fraunhofer IAP. Photo Credit: Potsdam Science Park, sevens+maltry photographers

The Fraunhofer Cluster of Excellence Programmable Materials CPM (Fraunhofer CPM, Freiburg, Germany) has developed a 4D printing technology that can alter the shape of predefined, printed polymers when heated, shrinking them by up to 63%, according to a test performed on rod-shaped samples. Fraunhofer CPM says in the future, such technologies could be used to produce parts that exhibit a specific behavior only after they take their predefined shape, using fasteners in the assembly components in the medical technology, mechanical engineering, automotive and aviation industries as examples. 

How does 4D printing work? According to Fraunhofer’s team of researchers, the technology adds the dimension of time, or 1D, to the dimension of space, or 3D. In this way, objects can be printed from shape memory polymers that can change their shape once at a later point in time when exposed to heat. Specific curvatures are also possible in a targeted manner.

“We initially started with a relatively simple rod geometry, but ultimately we were able to produce more complex hollow cylinders and hollow cuboid-shaped samples,” says Dr. Thorsten Pretsch from the Fraunhofer Institute for Applied Polymer Research IAP, who is coordinating the project at Fraunhofer CPM. “For all the geometries we investigated, we specified the desired material behavior in advance.”

There are generally two ways to adjust the response to a temperature increase, researchers note. The first is the choice of material — here the researchers developed a new thermoplastic polyurethane (TPU), with shape memory properties. The team also showed that the findings gained from 4D printing can also be transferred to another thermoplastic polymer: They produced shrinkable printed objects from the bio-based polymer polylactic acid (PLA). The second possibility lies in the management of the printing process.

“The key is that we give the materials very little time to cool down during printing. As a result, drastic internal stresses are stored in the material. The subsequent shrinkage effect is then very pronounced,” says Pretsch. In short, the choice of material, processing temperature and printing speed can be used to adjust not only the shrinkage behavior, but also the curved state.

The first step in the project was to develop the material and transfer the findings from TPU to PLA. The second step was to develop a demonstrator, a door opener that is shrunk onto a door handle so that it can be operated with the elbow without hand contact. Disassembly is simple: By reheating, the door opener detaches from the handle without leaving any residue. When the print object is no longer needed, it can be ground and reprocessed into filament that can be used at least one more time for 4D printing.

“The concept is holistic and future-oriented. In terms of a cradle-to-cradle approach, we have gone through the entire product cycle — from the selection of monomers and polymer synthesis to the 4D printing of a demonstrator and its mechanical recycling,” Pretsch summarizes.

The four Fraunhofer institutes contributed their specific expertise. The Fraunhofer IAP synthesized the shape memory polymer, further developed the 4D printing technology and carried out the mechanical recycling; Linda Weisheit from the Fraunhofer Institute for Machine Tools and Forming Technology IWU developed the concept of programmable stiffness of the 4D materials; and the Fraunhofer Institute for Industrial Mathematics ITWM conducted mathematical simulations to design the demonstrator.

“For example, we investigated how the force is distributed in the door opener when it is loaded. We were also interested in finding out which design is better in terms of material consumption,” explains Dr. Heiko Andrä. The practical tests took place at the Fraunhofer Institute for Mechanics of Materials IWM. “Here, for example, the question was which torques occur when the door opener is loaded,” explains Dr. Tobias Amann.

The results of the project were published in the journal Macromolecular Materials and Engineering.

Airtech
Smart Tooling
Chem Trend
CAMX 2024
NewStar Adhesives - Nautical Adhesives
industrial CNC routers
CW Tech Days Sustainability - Register Today!
CompositesWorld
CompositesWorld
Carbon Fiber 2024
KraussMaffei Metering Systems
A manufacturing puzzle

Related Content

Automation

Plant tour: BeSpline/Addcomp, Sherbrooke, QC, Canada

Composites automation specialist increases access to next-gen technologies, including novel AFP systems and unique 3D parts using adaptive molds.

Read More
Trends

Automated filament winding system increases throughput, reduces manual labor for pressurized well tank production

For its new line of composite well water tanks, Amtrol worked with Roth Composite Machinery on an automated process for faster, more easily tracked production.

Read More
Trends

JEC World 2023 highlights: Innovative prepregs, bio-resins, automation, business development

CW’s Jeff Sloan checks in with JEC innovations from Solvay, A&P, Nikkiso, Voith, Hexcel, KraussMaffei, FILL, Web Industries, Sicomin, Bakelite Synthetics, Westlake Epoxy and Reliance Industries.

Read More
Carbon Fibers

RUAG rebrands as Beyond Gravity, boosts CFRP satellite dispenser capacity

NEW smart factory in Linköping will double production and use sensors, data analytics for real-time quality control — CW talks with Holger Wentscher, Beyond Gravity’s head of launcher programs.

Read More

Read Next

Pressure Vessels

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Thermoplastics

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Airtech International Inc.