Airtech

Share

dry carbon fiber braided poles for marine applications
Photo Credit, all images: Shellback Canvas LLC

Nanette Hultgren, owner of Shellback Canvas LLC (Palmetto, Fla., U.S.), has been in the marine fabrication business for 33 years, developing and building products such as canvas awnings for fishing boats and, more recently, awning support poles. One challenge in this business, she says, was that for years, the state-of-the-art aluminum and PVC support poles on the market were not strong enough to withstand the high winds on a boat during use. Stainless steel poles, though stronger, were too heavy and stiff, and not easily storable. A few carbon fiber options were available, and showed potential to meet both the requirements for stiffness and light weight, but they were made from prepreg fabrics that Hultgren says were prohibitively expensive.

About 10 years ago, Hultgren decided to try to develop her own carbon fiber composite poles for use with her canvas awnings. The goal was to develop a cost-effective solution that met the specific requirements for her two-piece breakdown awning poles.

After some market searching and trial and error, Hultgren decided to try braided carbon fiber sleeves from A&P Technology (Cincinnati, Ohio, U.S.) infused with epoxy. To achieve the desired thickness and stiffness, two braided sleeves form the inner and outer layers, with a unidirectional (UD) carbon fiber sleeve layer in the middle. First, she tried a wet hand layup, but the combination of the three material layers was too thick for the resin to properly infuse. Next, she enlisted the help of a composites professional, who developed a two-part mold out of fiberglass on which to vacuum infuse the parts. However, the cylindrical shape of the poles proved too complex for infusion, and Hultgren realized that some type of pressure would be needed to properly infuse the braid with resin.

Ultimately, Hultgren designed a two-part aluminum mold with clamps for pressure. Her process uses a patented thin-wall plastic tube as a left-in mandrel, with a removable support tube to maintain shape. A patented mold release liner was also designed to prevent the liquid epoxy from contacting the mold directly and to help draw the epoxy over the tube before pressure is applied. 

To make the final product, two poles are manufactured and then connected via a patented carbon fiber composite socket, forming a breakdown point for easy stowage.

carbon fiber braided poles to hold boat awnings

In the final, patented process, the mold release liner is inserted into the mold, followed by the braided sleeves and mandrels. Liquid epoxy is poured into the mold, making sure the entire pole is covered. Then pressure and heat are added.

The resulting rods exhibited the light weight, durability and flexibility needed. Sold and marketed as Blackstick for the past four years, Shellback Canvas LLC sells a carbon fiber socket breakdown pole for rod holder shades and rocket launcher shades for boats.

Hultgren notes that now, there are several carbon fiber prepreg pole options on the market. “Prepreg is easier to source and manufacture for those new to composites, but braid outperforms prepreg rods in this application,” she says. “They are tougher, more flexible, with no delamination.”

Shellback Canvas LLC now solely produces Blacksticks to keep up with growing demand for the product, Hultgren says. Ultimately, she says she could see her process and liner being used for other cylindrical part applications, in oil and gas or other markets. “Prepreg and filament winding are the state of the art when it comes to rods and tubes, and they have their advantages. But I think braid has a lot of potential that hasn’t been seen yet.”

Airtech
Composites One - distributor
HEATCON Composite Systems
Industrial CNC Routers
CompositesWorld
Alpha’s Premier ESR®
Large Scale Additive Manufacturing
Airtech

Related Content

Thermoplastics

Plant tour: Joby Aviation, Marina, Calif., U.S.

As the advanced air mobility market begins to take shape, market leader Joby Aviation works to industrialize composites manufacturing for its first-generation, composites-intensive, all-electric air taxi.

Read More
Wind/Energy

Recycling end-of-life composite parts: New methods, markets

From infrastructure solutions to consumer products, Polish recycler Anmet and Netherlands-based researchers are developing new methods for repurposing wind turbine blades and other composite parts.

Read More
Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Aerospace

Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.

Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.

Read More

Read Next

Glass Fibers

VIDEO: High-volume processing for fiberglass components

Cannon Ergos, a company specializing in high-ton presses and equipment for composites fabrication and plastics processing, displayed automotive and industrial components at CAMX 2024.

Read More
Hi-Temp Resins

Plant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France

Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.

Read More
Focus on Design

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More
Airtech International Inc.