Chem Trend
Published

Huntsman Advanced Materials resin systems meet composite pressure vessel requirements

Araldite resin systems cover wet and towpreg filament winding and RTM manufacturing processes for increased productivity and greater part consistency.

Share

Huntsman Araldite resin systems for composite pressure vessels.

Photo Credit: Huntsman Corporation

According to Huntsman Advanced Materials (The Woodlands, Texas, U.S.), as hydrogen roadmaps and investments grow and enter new applications, hydrogen storage in pressure vessels will become a critical enabler for wide-scale adoption and the subject of intensive research and development. To further this progress, the company has developed the Araldite range for filament-wound composite pressure vessels. Encompassing high-performance epoxy, acrylic, polyurethane adhesives, high-performance specialty epoxy and benzoxazine resin systems, Araldite is said to be able to meet the stringent requirements for hydrogen storage. This includes pressure testing, impact resistance, chemical exposure and other temperature and pressure cycling tests and regulations.

According to Huntsman, while the pressure resistance of hydrogen vessels is mainly governed by the fiber reinforcement, the resin matrix plays a key role in providing environmental exposure protection (thermal, chemical, impact) as well as fatigue/pressure-cycling resistance to withstand the filling and emptying cycles. Table 1 below shows three examples of high-performance epoxy-based systems that offer a combination of thermal resistance, high mechanical strength, high elongation at break and high fracture toughness.

 Resin system

Araldite resin /
Aradur 917-1 / Acc. 960-1

 Araldite resin /
Aradur 1571 / Accelerator

 Araldite LY3508 / Aradur 3478

 Process

 Wet filament winding

Towpreg filament winding

RTM

 Cure cycle

 2 hours, 80°C + 2 hours, 110°C

 30 min, 140°C

 20 min, 100°C + 2 hours, 130°C

 Tg (°C) DSC midpoint, ISO

 120

132

115

 Tensile strength (MPa) ISO 527

 75

77

70

 Fracture toughness KIc (MPa.m1/2) ISO 13586

 1.58

1.55

1.7

In addition, Araldite solutions for pressure vessels cover a range of manufacturing processes: wet filament winding is a well-established manufacturing method, but increasingly resin transfer molding (RTM) and towpreg winding are considered in order to meet the need for increased productivity and greater part consistency. 

Huntsman Advanced Manufacturing further identifies the process features for each method, which offer a range of options for composite pressure vessel manufacturing. For example, wet filament winding is a well-established process, which offers winding speeds of 1-2 meters per second at maximum and a range of winding angles. Towpreg filament winding is a clean process, with fast winding speeds of >5 meters per second, with controlled and consistent resin content, variable winding speed (fast on hoops, slower on domes), a range of winding angles and optimized winding patterns. The process also enables high reproducibility and short cure times (down to 30 minutes). Alternately, the RTM process enables fast injection versus filament winding operations, fast cure in the mold (20 minutes), and is ideal for small-sized vessels. RTM also ensures high laminate quality (low porosity content), high investment (braiding, molds, press, dosing equipment) and higher resin content than towpreg and filament winding.

Building on a strong experience in natural gas pressure vessel technology, Huntsman Advanced Materials adds that it can offer a comprehensive range of epoxy resin systems that address the emerging challenges and manufacturing requirements for hydrogen storage. In addition, expertise in material characterization and process simulation offer a powerful tool to accelerate product development and optimize manufacturing, leading to increased part quality and minimum production cycle times. 


This post is courtesy of the CompositesWorld and AZL Aachen GmbH media partnership.

Coast-Line Intl
Airtech
Chem Trend
CompositesWorld
Harper International Carbon Fiber
pro-set epoxy laminate infusion tool high temp Tg
CAMX 2024
KraussMaffei Metering Systems
Carbon Fiber 2024
NewStar Adhesives - Nautical Adhesives
Thermwood Corp.
CompositesWorld

Related Content

Pressure Vessels

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Wind/Energy

Drag-based wind turbine design for higher energy capture

Claiming significantly higher power generation capacity than traditional blades, Xenecore aims to scale up its current monocoque, fan-shaped wind blades, made via compression molded carbon fiber/epoxy with I-beam ribs and microsphere structural foam.

Read More
Infusion

JEC World 2022, Part 1: Highlights in sustainable, digital, industrialized composites

JEC World 2022 offered numerous new developments in composites materials, processes and applications, according to CW senior editor, Ginger Gardiner, most targeting improved sustainability for wider applications.

Read More
Sustainability

Materials & Processes: Resin matrices for composites

The matrix binds the fiber reinforcement, gives the composite component its shape and determines its surface quality. A composite matrix may be a polymer, ceramic, metal or carbon. Here’s a guide to selection.

Read More

Read Next

RTM

Huntsman PU resin systems enable lightweight sandwich construction for automotive

Vitrox RTM and Rimline FC polyurethane systems to advance lightweighting, design freedom and simplified manufacturing opportunities.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Airtech International Inc.