CompositesWorld
Published

Giant blades could spur more growth in offshore energy in U.S.

Sandia National Laboratories’ research is working on designs that are two and a half times longer than any existing wind blade.

Share

A new design for blades longer than two football fields could help bring offshore 50‐megawatt (MW) wind turbines to the U.S. and the world. Sandia National Laboratories’ research on the extreme‐scale Segmented Ultralight Morphing Rotor (SUMR) is funded by the Department of Energy’s (DOE) Advanced Research Projects Agency‐E long, two and a half times longer than any existing wind blade.

The team is led by the University of Virginia and includes Sandia and researchers from the University of Illinois, the University of Colorado, the Colorado School of Mines, and the National Renewable Energy Laboratory Corporate advisory partners include Dominion Resources General Electric Co. Siemens AG and Vestas Wind Systems.

 “Exascale turbines take advantage of economies of scale,”
 said Todd Griffith, lead blade designer on the project and technical lead for Sandia’s

Sandia’s previous work on 13‐MW systems uses 100‐meter blades (328 feet) on which the initial SUMR designs are based. While a 50‐MW horizontal wind turbine is well beyond the size of any current design, studies show that load alignment can dramatically reduce peak stresses and fatigue on the rotor blades. This reduces costs and allows construction of blades big enough for a 50‐MW system.

Most current U.S. wind turbines produce power in the 1‐ to 2‐MW range, with blades about 165 feet (50 meters) long, while the largest commercially available turbine is rated at 8 MW with blades 262 feet (80 meters) long.

“The U.S. has great offshore wind energy potential, but offshore installations are expensive, so larger turbines are needed to capture that energy at an affordable cost,” Griffith said.

Barriers remain before designers can scale up to a 50‐MW turbine — more than six times the power output of the largest current turbines.

“Conventional upwind blades are expensive to manufacture, deploy and maintain beyond 10‐15 MW. They must be stiff, to avoid fatigue and eliminate the risk of tower strikes in strong gusts. Those stiff blades are heavy, and their mass, which is directly related to cost, becomes even more problematic at the extreme scale due to gravity loads and other changes,” Griffith said.

He said the new blades could be more easily and cost‐effectively manufactured in segments, avoiding the unprecedented‐scale equipment needed for transport and assembly of blades built as single units.

The exascale turbines would be sited downwind, unlike conventional turbines that are configured with the rotor blades upwind of the tower.

SUMR’s load‐alignment is bio‐inspired by the way palm trees move in storms. The lightweight, segmented trunk approximates a series of cylindrical shells that bend in the wind while retaining segment stiffness. This alignment radically reduces the mass required for blade stiffening by reducing the forces on the blades using the palm‐tree inspired load‐alignment approach.

Segmented turbine blades have a significant advantage in parts of the world at risk for severe storms, such as hurricanes, where offshore turbines must withstand tremendous wind speeds over 200 mph. The blades align themselves to reduce cantilever forces on the blade through a trunnion hinge near the hub that responds to changes in wind speed.

“At dangerous wind speeds, the blades are stowed and aligned with the wind direction, reducing the risk of damage. At lower wind speeds, the blades spread out more to maximize energy production.” Griffith said.

Moving toward exascale turbines could be an important way to meet DOE’s goal of providing 20 percent of the nation’s energy from wind by 2030, as detailed in its recent Wind Vision Report.

Kennametal Composite Material Tooling Solutions
CompositesWorld
HEATCON Composite Systems
release agents, purging compounds, process chemical specialties
Chem Trend
CAMX 2024
re-engineered the ORPC foil and strut
industrial CNC routers
NewStar Adhesives - Nautical Adhesives
Carbon Fiber 2024
CompositesWorld
Airtech

Related Content

Thermoplastics

Materials & Processes: Composites fibers and resins

Compared to legacy materials like steel, aluminum, iron and titanium, composites are still coming of age, and only just now are being better understood by design and manufacturing engineers. However, composites’ physical properties — combined with unbeatable light weight — make them undeniably attractive. 

Read More

Materials & Processes: Fibers for composites

The structural properties of composite materials are derived primarily from the fiber reinforcement. Fiber types, their manufacture, their uses and the end-market applications in which they find most use are described.

Read More
Automotive

Novel dry tape for liquid molded composites

MTorres seeks to enable next-gen aircraft and open new markets for composites with low-cost, high-permeability tapes and versatile, high-speed production lines.

Read More

JEC World 2022, Part 3: Emphasizing emerging markets, thermoplastics and carbon fiber

CW editor-in-chief Jeff Sloan identifies companies exhibiting at JEC World 2022 that are advancing both materials and technologies for the growing AAM, hydrogen, automotive and sustainability markets.

Read More

Read Next

Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Wind/Energy

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Advanced Nonwovens for AAM Composites - TFP