Airtech
Published

Adaptive composite elements for building facades exhibited at JEC World 2023

University of Stuttgart institutes use carbon and glass fiber composites, robotic fabrication, biomimetic design and digial twin/control to demonstrate adaptive facade elements for future buildings.

Share

Based on the ITECH Research Demonstrator (top left), The University of Stuttgart Institute for Textile and Fiber Technologies (ITFT) will exhibit its “Adaptive FRP elements for facade shading” demonstrator (bottom right) in the Building & Industry Innovation Planet at JEC World 2023. Photo Credit: University of Stuttgart 

The University of Stuttgart’s (Stuttgart, Germany) research demonstrator “Adaptive FRP elements for facade shading” has been selected as an interactive exhibit in the Building & Industry Innovation Planet at JEC World 2023 (April 25-27, Paris, France). Movement (bending of the flap up to 90°) is activated by cushions integrated asymmetrically into the fiber-reinforced polymer (FRP) composite laminate. Visitors at JEC will be able to pressurize the cushions in the demonstrator themselves via a foot pump.

The ITECH Research Demonstrator showcased adaptive facade elements using carbon and glass fiber-reinforced composites, robotic tape laying, biomimetic design, digital kinematic analyses and computer control with a digital twin to showcase future building technology. Photo Credit: University of Stuttgart ITECH Research Demonstrator

This exhibit at JEC World 2023 is derived from the ITECH Research Demonstrator developed in 2018-19 by the Institute of Building Structures and Structural Design (ITKE) in collaboration with the Institute for Textile and Fiber Technologies (ITFT) and the Institute for Computational Design and Construction (ICD). That demonstrator comprises two folding components — one 1.7 x 3.0 meters tall, the other 1.7 x 2.5 meters tall — with a total weight of 23 kilograms per element. The laminates for the two elements were manufactured by robotic tape-laying of up to eight simultaneous tapes made from carbon and glass fiber-reinforced polyamide (PA). 

With a maximum actuation pressure of 0.8 bar in the horizontal hinges and 0.4 bar in the vertical hinges, a folding angle of nearly 80° can be achieved in the two composite components. This movement can be initiated via two different means.

ITECH Research Demonstrator adaptive composite facade elements

Two different means of interaction. Conductive carbon fiber in the lamainates enable parts to be touch sensitive or movement can be controlled by a mobile and web-based interface. Photo Credit: University of Stuttgart

A user can directly interact with the adaptive FRP elements through the conductivity of the carbon fibers in the composite laminates, enabling parts of the pavilion to be touch sensitive. When a user taps the structure in locally defined areas, opening and closing of the adaptive composite elements can be triggered.

A second mode of interaction is enabled through a custom mobile and web-based user control interface, allowing a user to activate and control the motion of the demonstrator via smart phone or tablet PC. The interface simultaneously visualizes a real-time 3D model digital twin representing the current folded or unfolded state of the composite structures.

ITECH Research Demonstrator 2018-19 from itke on Vimeo.

Read more about this project.

The ITECH Research Demonstrator and its associated exhibit at JEC World 2023 serve as a proof-of-concept, representing the possibilities of achieving adaptive architectural structures composed of FRP composite laminates with compliant hinge zones and integrated pneumatic actuators. These demonstrators investigate the possibilities of direct interaction between the built environment and its inhabitants through active control and real-time communication.

They also demonstrate the power of biomimetic design coupled with the integration of computational design, simulation and composite fabrication processes while highlighting the innovation potential of an interdisciplinary research and development environment.

Smart Tooling
Airtech
industrial CNC routers
3D industrial laser projection
Thermwood Corp.
NewStar Adhesives - Nautical Adhesives
CAMX 2024
HEATCON Composite Systems
Harper International Carbon Fiber
KraussMaffei Metering Systems
Carbon Fiber 2024
CompositesWorld

Related Content

Hi-Temp Resins

Composites enable epic interior for Museum of the Future

For this one-of-a-kind lobby, AFI pioneered digital, reconfigurable molds to achieve organic-shaped, multifunctional panels and stairwell cladding.

Read More
Out of Autoclave

Materials & Processes: Resin matrices for composites

The matrix binds the fiber reinforcement, gives the composite component its shape and determines its surface quality. A composite matrix may be a polymer, ceramic, metal or carbon. Here’s a guide to selection.

Read More
Construction

Composite buildings go monocoque

Superior protection from the elements plus fast, affordable installation and maintenance have quickly made Orenco Composites’ DuraFiber buildings an attractive choice for water and wastewater, communications, transportation and power industry outbuildings.

Read More
Aerospace

New polymer expands composites options in demanding environments

Aromatic thermosetting copolyester offers unique properties, availability in multiple form factors.

Read More

Read Next

Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Wind/Energy

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Airtech International Inc.