Published

NatureWorks Ingeo 3D700 biopolymer reduces LSAM warpage, minimizes print failures

Testing by NatureWorks’ global partners demonstrates a shrink rate less than 0.25% in printed parts and obtainable lower print temperatures due to optimized melt viscosity and microstructure.

Share

Part (A) in black printed with polypropylene (PP) shows notable warpage in the side wall compared with the same part (B) printed with clear Ingeo 3D700 even when print conditions were optimized for each material. Parts courtesy of Dyze Design.

NatureWorks (Minnetonka, Minn., U.S.) continues to grow its portfolio of Ingeo biopolymers designed for additive manufacturing (AM) with the introduction of Ingeo 3D700, a new PLA grade for use in large-format additive manufacturing. NatureWorks notes that monofilaments made with this PLA grade, broadly used in the desktop 3D printing market, have shown notable performance characteristics such as precise detail, good adhesion to build plates with no heating needed, reduced warping or curling and low odor while printing. These properties are said to make Ingeo 3D700 ideal for 3D printing using many different types of printers and for a broad range of printing applications from consumer-level to industrial applications.

In large-format printing, the higher rate and volume of polymer deposition can quickly result in excessive warpage with certain materials, like ABS, or significant shrinkage as with some polyolefins or some general-purpose PLA grades. Warpage pulls the part away from the print bed or causes layer separation, resulting in failed prints. Controlling the polymer-microstructure, NatureWorks’ amorphous PLA grade, Ingeo 3D700, offers a low material shrink rate, which reduces warpage, improves gap fill and adhesion and ensures successful prints. 

Further, the need for added reinforcements such as mineral fillers, glass, carbon or cellulosic fiber to reduce part warpage have been minimized. If a specialty print requires additional reinforcement, then cellulose-based additives are easily compounded with Ingeo 3D700, creating a bio-based compound alternative to high-cost petrochemical-based compounds such as carbon fiber ABS.

According to NatureWorks, multiple partners evaluated Ingeo 3D700 for use in large-format fused filament fabrication (FFF) and direct resin-to-print processes with positive results. For example, in addition to going one step further towards reducing warpage in large-format prints beyond previous Ingeo PLA grades designed for 3D printing, Polymaker (Shanghai, China), a leading manufacturer of 3D printing material and filament measured improved Z-layer adhesion when printing with Ingeo 3D700.

Dyze Design (Quebec, Canada) an extruder designer and supplier of components for large-format printers, ran print tests comparing Ingeo 3D850, a grade already known for its low-shrink characteristics, and Ingeo 3D700. The tests, according to the company, indicate that a large-format part printed using Ingeo 3D850 demonstrated a shrink rate of 1.25%. In comparison, the same part printed with Ingeo 3D700 had a shrink rate of less than 0.25%. Retaining a higher throughput rate, Dyze Design was also able to successfully print at a lower temperature of 190ºC without seeing shrinkage or warpage in the part.

Filament manufacturer, MCPP (Helmond, Netherlands), conducted printing tests using filament made from Ingeo 3D700 and demonstrated a 11-13% increase in flow rate due to the optimized melt viscosity, compared to a general-purpose PLA. According to MCPP, this resulted in improved gap fill and adhesion between perimeter layers, suggesting its suitability for fused granular fabrication (FGF) 3D printing.

Ingeo 3D700 is now available for use as resin pellets for direct resin-to-print processes or as filament for FFF process in the U.S., Asia, and Europe. 

Related Content

Feature

Drawing design cues from nature: Designing for biomimetic composites, Part 1

Biomimicry is an interdisciplinary methodology that can inform composites design and manufacturing via use of more effective and sustainable materials, structural fabrication and technological practices.    

Read More
Marine

European boatbuilders lead quest to build recyclable composite boats

Marine industry constituents are looking to take composite use one step further with the production of tough and recyclable recreational boats. Some are using new infusible thermoplastic resins.

Read More
Recycling

JEC World 2024 highlights: Glass fiber recycling, biocomposites and more

CW technical editor Hannah Mason discusses trends seen at this year’s JEC World trade show, including sustainability-focused technologies and commitments, the Paris Olympics amongst other topics.

Read More
Biomaterials

Bioabsorbable and degradable glass fibers, compostable composite parts

ABM Composite offers sustainable options and up to a 60% reduction in carbon footprint for glass fiber-reinforced composites.

Read More

Read Next

Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Wind/Energy

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More