NASA carbon fiber glider to gather weather data during flight
The teams are still working on the design but the aircraft is expected to have a wingspan of about 3 feet and will be made of double ply, carbon fiber.
The Preliminary Research Aerodynamic Design to Land on Mars, or Prandtl-M, flies during a test flight. A new proposal based on the aircraft recently won an agencywide technology grant. Photo: NASA Photo/Lauren Hughes
NASA Armstrong Flight Research Center staff and students are working on a carbon fiber glider that could deliver more accurate, immediate and economical information on severe weather like hurricanes. Called the Weather Hazard Alert and Awareness Technology Radiation Radiosonde (WHAATRR) Glider, the vehicle could potentially save the National Weather Service up to $15 million a year compared to current methods and with faster and more reliable data, says project manager Scott Wiley.
In addition to NASA and the National Weather Service, the WHAATRR Glider could benefit the National Oceanic and Atmospheric Administration and potentially serve as an airborne sciences platform, Wiley says. The data obtained from such gliders could reduce costs incurred from unnecessary airline delays and potentially save aircraft and lives, he added.
Students and Armstrong staff have been developing the glider based on the Prandtl-M aircraft to fly in the atmosphere of Mars. The teams are still working on the design but the aircraft is expected to have a wingspan of about 3 feet and will be made of double ply, carbon fiber. One of the first tests will be an air launch from 20,000 feet from a weather balloon, Wiley says. Simultaneously, sensors, instrumentation and flight control software and hardware will be prepared for the aircraft’s ultimate test in the early development phase – a drop from 100,000 feet altitude and remotely piloted to a predetermined destination.
Another expected contribution of such vehicles is the ability to gather research to improve weather forecast models on Earth and in space. The glider development also could bolster the goal of flying on Mars to collect atmospheric information to inform exploration decisions.
Related Content
-
MFFD longitudinal seams welded, world's largest CFRTP fuselage successfully completed
Fraunhofer IFAM and partners have completed left and right welds connecting the upper and lower fuselage halves and sent the 8×4-meter full-scale section to ZAL for integration with a cabin crown module and testing.
-
Sulapac introduces Sulapac Flow 1.7 to replace PLA, ABS and PP in FDM, FGF
Available as filament and granules for extrusion, new wood composite matches properties yet is compostable, eliminates microplastics and reduces carbon footprint.
-
Carbon fiber, bionic design achieve peak performance in race-ready production vehicle
Porsche worked with Action Composites to design and manufacture an innovative carbon fiber safety cage option to lightweight one of its series race vehicles, built in a one-shot compression molding process.