CW Blog

This Hybrid SMC A350 door frame lining (TRL 6) reduces part cost and manufacturing lead time by more than 50% vs.  previous honeycomb/glass-phenolic prepreg sandwich. Source: CTC Stade.


Hybrid SMC
As highlighted in this month’s feature: “CW Plant Tour: Composites Technology Center”, SMC is being reinvented by Airbus and the Composites Technology Center (CTC) in Stade, Germany. Current composite aircraft interior components often use glass fiber/phenolic sandwich construction, characterized by low buy-to-fly material usage, high cycle times and extensive rework/finishing. CTC wanted to address these issues, but also to enable more complexity and function, for example, integration of wire clips, attachment interfaces, circuitry, fasteners, coloring and different surfaces. Thus, CTC has combined thermoset, short-fiber SMC with preimpregnated, tailored continuous fiber reinforcements in a single-stage compression molding process. This is very similar to a process  demonstrated with thermoplastic materials in the CAMISMA project.

Read More

The Institute for Advanced Composites Manufacuring Innovation (IACMI, Knoxville, TN), or The Composites Institute, held its winter membership meeting in Denver, CO, Feb. 1-2 and provided an update on activities of the public-private US Department of Energy consortium, which is accelerating material and processing technologies to help make composites manufacturing more efficient and less expensive. About 300 people attended the meeting.

First, the day before the meeting, IACMI officially opened its Composites Manufacturing Education & Technology (CoMET) facility at the National Renewable Energy Laboratory (NREL, Golden, CO). There, it unveiled a 9m demonstrator wind turbine blade designed to prove the efficacy of the application of materials that are not commonly used in wind blades.

Read More

Among many topics, CompositesWorld keeps tabs on composites in infrastructure and construction, a topic being discussed this week as it happens at the American Composites Manufacturers Assn.’s (ACMA) 2017 Infrastructure Day and NIST Workshop in Washington, D.C. From the very early days of CW magazine’s predecessors High-Performance Composites and Composites Technology magazines, strengthening of concrete columns, beams, walls and pipelines using carbon fiber reinforcements got a lot of ink.  

One of the pioneers of this concept of strengthening concrete structure with composites is Dr. Mo Ehsani, professor emeritus of civil engineering at the University of Arizona, a Fellow of the American Society of Civil Engineers and American Concrete Institute, and president of QuakeWrap Inc. (Tucson, AZ, US). He has researched the seismic behavior of structures since 1987, and authored what is reportedly the first technical paper on this methodology in 1990, followed by development of approaches to repair and retrofit civil construction with composites. I hadn’t heard much about Ehsani and QuakeWrap recently until today, when I received an email and a video that caught me up on some of the projects the company has tackled successfully.

Read More

ELG Carbon Fibre Ltd. (Coseley, UK) and Adesso Advanced Materials Wuhu Co. Ltd. (Wuhu, China) have concluded a MOU regarding cooperation to develop lightweight composite components for the automotive industry based on ELG’s recycled carbon fiber materials.

The initial focus of the cooperation is to investigate applications that have been identified by Chery New Energy Automobile Technology Co. Ltd. (Wuhu, China) on the Chery eQ1 electric vehicle. The goal is to further reduce the weight of the eQ1, which already makes extensive use of aluminium technology, through selective use of carbon fiber composites. The longer term intent is to then apply the knowledge gained from these projects in Chery’s conventional vehicles.

Read More

Seriforge is new to the composites industry, but its principals have a long history in solving complex 3D problems using digital technology and mechatronics (combination of electronics with mechanical engineering and computer engineering). Their goal: nothing less than to revolutionize composite parts manufacturing. Their method: use digital technology and control systems engineering to solve the age-old problem of how to make complex composite parts quickly.

How quickly? “Our focus is on industrial-scale production,” says Seriforge VP of business development, Marco Zvanik, “long-term, we’re targeting 10,000-20,000 parts/month using a single automated processing line.” But this is about preforms, right? To produce parts, there would still be additional operations required, like resin transfer molding (RTM)? Yes, Seriforge is targeting preforms, but in future iterations it will also be able to cure these preforms. But that’s looking forward. Let’s look at what the company has achieved so far.

Read More