Airtech
Published

University of Nottingham commissions resin metering system for short fiber compression molding

Slack & Parr’s precision external gear pumps enable the university’s EPSRC Future Composites Manufacturing Research Hub to precisely determine the fiber-to-resin ratio for their robot-mounted liquid resin spray system.  

Share

Slack & Parr's gear pumps are machined to extremely precise tolerances to deliver accuracy and control even at high pressure. Photo Credit: University of Nottingham, Slack & Parr

Precision metering pump specialist Slack & Parr (Derby, U.K.) has been commissioned by the University of Nottingham (U.K.) to supply its high-precision metering technologies as part of a short fiber compression molding system to manufacture composite parts for the automotive industry.

The short fiber compression molding approach has been developed by a team from the EPSRC Future Composites Manufacturing Research Hub at the University of Nottingham, led by Professor Nick Warrior and Dr. Anthony Evans. Their objective has been to develop an out-of-autoclave (OOA) manufacturing technology that accommodates lower cost, short fiber formats as a way of making composites more viable and cost-efficient and supporting the transport industry’s ambitions to become more fuel-efficient and sustainable. The solution is being used to manufacture components including complex-shaped under bonnet and suspension parts for automotive.

The university’s technology uses a liquid resin spray (LRS) system to apply the resin matrix to short form (25-millimeter) carbon fibers activated by an air stream. In this way, the resin and the fibers are said to make complete and uniform contact with each other without the need for mechanical application.

Professor Nick Warrior explains how Slack & Parr’s precision external gear pumps are key to the resin metering and spraying stages of the process: “Slack & Parr’s metering pumps allow us to control precise amounts of the resin’s constituent parts to achieve a matrix with the exact characteristics we need,” Warrior says. “Being able to accurately meter each ingredient means we can mix the resin matrix to a viscosity that can be sprayed reliably and effectively without having to rely on the overuse of solvents. Varying the percentages even slightly at this stage can result in a resin that may not spray or cure correctly, so accuracy is crucial here. We can also adjust the metering pump to create new resin systems with different characteristics, for example faster curing and better mould release to help us achieve our target 30-second cure cycle.”

robot-mounted liquid resin spray system.

The University of Nottingham has developed a robot-mounted liquid resin spray system incorporating Slack & Parr's precision metering technology. Photo Credit: University of Nottingham, Slack & Parr

Slack & Parr’s metering pumps are built around hardened steel involute gears which are machined to precise tolerances of one or two microns. The company says this results in extremely small, controlled clearances — measuring less than a human hair — between the gear and mating components, ensuring almost no internal slip even at high pressures. This level of precision means the pump is able to control or meter the flow with extreme accuracy and repeatability.

In the university’s system, each part of the resin matrix is held separately to prevent curing and mixed only at the point of application. The metered matrix is then sprayed directly from the resin mixing tank onto the short form carbon fiber filaments which are simultaneously propelled into a controlled air stream via a robot head. The resin-coated carbon fibers are subsequently molded to form a composite component.

The University of Nottingham’s application requires three different fluids with different viscosities to be brought together at the same rate and in the right ratios to achieve the desired resin matrix and to ensure consistency and repeatability of the process. Using Slack & Parr’s gear pump technology, the university team was able to achieve a consistent flow throughout the process despite varying pressures linked to the different viscosities of the fluids.

“Our pump solutions are relevant to every area of the composites industry where the need to precisely determine the fiber-to-resin ratio is key to the manufacture of consistent composite materials and parts,” Neil Anderton, hydraulics and industrial director at Slack & Parr points out. “Importantly, the technology can also be extended out to other polymer resins and plastics to offer the same level of performance.”

Smart Tooling
HyperX Software for Composite Structural Analysis
cut by an Eastman
Airtech
hybrid additives
CompositesWorld
Advanced Nonwovens for Aerocomposites - TFP
Thermwood Corp.
release agents, purging compounds, process chemical specialties
industrial CNC routers
NewStar Adhesives - Nautical Adhesives
Coatings for Carbon Fiber from Keyland Polymer

Related Content

Trends

University of Maine unveils 100% bio-based 3D-printed home

BioHome3D, made of wood fibers and bioresins and entirely 3D printed, highlights Maine’s effort to address the need for more affordable housing.  

Read More

New online training course targets prepreg basics

JEC World 2024: Composites Expert highlights how its E-Learning Composites Academy platform supports flexible industry learning with new courses developed with Stelia Aerospace North America.  

Read More

Coriolis Composites installs AFP machine at Sabanci University

C1 robot contributes to technology development at the Integrated Manufacturing Technologies Research and Application Center (SU IMC) in Istanbul.

Read More
SHM

University of Sheffield researchers to drive structural health monitoring in U.K. infrastructure

The £7.7 million program, ROSEHIPS, anticipates exploitation of machine learning, sensing and digital twin technology for automated health monitoring in infrastructure, such as bridges, telecoms masts and wind turbines.  

Read More

Read Next

Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Wind/Energy

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Airtech International Inc.