Composites One
Published

Can IACMI propel us out of adolescence, into adulthood?

On Jan. 9, the US Department of Energy (DoE) announced that it will add US$70 million to the US$189 million already committed to the University of Tennessee’s Institute for Advanced Composites Manufacturing Innovation (IACMI) for composites R&D. CW's editor-in-chief Jeff Sloan asks, "What will come of this investment?"

Share

The biggest composites news of 2015, thus far, was the Jan. 9 announcement that the University of Tennessee’s Institute for Advanced Composites Manufacturing Innovation (IACMI) had received a highly coveted and much anticipated US$70 million investment from the US Department of Energy (DoE) for composites R&D. The DoE funds will be combined with US$189 million committed to IACMI by the Institute’s partners for a grand total of US$259 million. That’s a lot of dollars. 

The big question now is, What will come of this investment?

Stated goals are ambitious: Reduce overall manufacturing costs by 50%, reduce the energy used to make composites by 75% and increase the recyclability to more than 95% within the next decade. One would think that US$259 million could take us a long ways toward meeting these goals.

There are, however, a lot of cooks in the IACMI kitchen. The organization will be led by a group of seven core partners: the University of Tennessee, Michigan State University, Purdue University, the University of Kentucky, the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL) and the University of Dayton Research Institute (UDRI). Following their lead is a long and diverse list of other partners that includes other universities, institutes, economic development centers and many industry suppliers. 

At the top of the IACMI organizational chart is CEO Craig Blue, who will collect the money and manage the partnership’s 122 participants. To give this sprawling enterprise a little structure, he has organized it into five geographic regions, each with a unique focus: Michigan, vehicles; Colorado, wind turbines; Ohio, compressed gas storage; Indiana, design, modeling and simulation; Tennessee/Kentucky, materials and processing technology.

No matter how you slice it, IACMI has its work cut out for it. Composites, as you know, have a lot going for them: High strength and stiffness, light weight, durability, corrosion resistance, parts consolidation. Composites also have a lot going against them, all of which fall under the heading of “different” — different than steel, aluminum and other legacy materials, which are amorphous and isotropic, and for which material data is plentiful, design/simulation software is mature, and processing methods are established. Composites are none of the above. They are processed by widely varied and still comparatively slow means. Data are lacking. Simulation is in its gawky teenage stage, and the polymorphous nature of composites vastly compounds the difficulty of process control, product consistency and manufacturing repeatability.

To those who work with isotropic materials, composites offer a whole new world of potential benefits. But even an experienced designer or manufacturing engineer who is new to composites has few easy-to-use technical resources available to help him or her move comfortably into the world of composites fabrication.

Up to now, this hasn’t stopped progress. Our industry has happily relied on composites’ inherently superior mechanical properties and unique tailorability to overcome the design and manufacturing challenges. But OEMs are signaling that their patience is waning — these hurdles must be lowered if composites are to keep their place at the manufacturing table. We’re hearing this from the aerospace and automotive markets in particular, whose aluminum and steel suppliers have been busy developing new products that offer greater strength- and stiffness-to-weight than before, process in familiar fashion and come at a more economical price point. 

Can IACMI propel us out of adolescence into adulthood? Its size and the scope of the partnership seem to make it a good candidate. In any case, evolution is now a necessity, and someone must lead the way. John Byrne, Boeing’s VP of aircraft materials and structures, put it this way at CW’s Carbon Fiber 2014 conference in December: “The composites industry needs to grow up, and fast.”

De-Comp Composite Materials and Supplies
Park Aerospace Corp.
Janicki employees laying up a carbon fiber part
UV Cured Powder Coating from Keyland Polymer
Composites One
Precision Board High-Density Urethane
pro-set epoxy laminate infusion tool high temp Tg
Carbon Fiber 2024
Airtech
Harper International Carbon Fiber
CompositesWorld
CAMX 2024

Related Content

Epoxies

JEC World 2022, Part 3: Emphasizing emerging markets, thermoplastics and carbon fiber

CW editor-in-chief Jeff Sloan identifies companies exhibiting at JEC World 2022 that are advancing both materials and technologies for the growing AAM, hydrogen, automotive and sustainability markets.

Read More
Sustainability

Forvia brand Faurecia exhibits XL CGH2 tank, cryogenic LH2 storage solution for heavy-duty trucks

Part of its full hydrogen solutions portfolio at IAA Transportation 2022, Faurecia also highlighted sustainable thermoplastic tanks and smart tanks for better safety via structural integrity monitoring.

Read More
Wind/Energy

Moving toward next-generation wind blade recycling

Suppliers, fabricators and OEMs across the composite wind blade supply chain ramp up existing technologies, develop better reclamation methods and design more recyclable wind blades.

Read More
BMI

Materials & Processes: Fabrication methods

There are numerous methods for fabricating composite components. Selection of a method for a particular part, therefore, will depend on the materials, the part design and end-use or application. Here's a guide to selection.

Read More

Read Next

Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Thermoplastics

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Wind/Energy

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Composites One