Carbon fiber lightens medical laser chassis
Reduced weight shortens surgical and diagnostic procedures.
Lasers have been used in industry since the 1960s. They are now commonly employed in many surgical procedures, such as cataract, tumor and lesion removal, vision correction, and cosmetic surgery, and they also play a role, today, in a wide range of medical diagnostic procedures. Dexcraft (Wołomin, Poland) manufactures medical laser chasses, using carbon fiber-reinforced epoxy composites. “It lightens the chassis by roughly 40%, resulting in a 4-kg weight vs. aluminum at 6.5 kg,” says owner Artur Kiliański. “The lower weight makes the laser move faster, which reduces the time required for medical procedures and makes the laser easier to control.” The much lower starting cost offered by manufacturing with carbon fiber composites also is a key benefit. “The molds only require a 3D drawing,” notes Kiliański, and he says the cost of mold build is about €3,000-€4,000 (US$3,410-US$4,550).
“Starting manufacture of this element from aluminum or steel is much more expensive,” he contends, pointing out that this is especially true for manufacturers who produce specialty items
at low volumes, for example, 50-100 units per year. Carbon fiber also helped Dexcraft’s customer to differentiate its products. “The client wanted to offer a lightweight, premium-quality product, and the easily recognized look of aesthetic carbon fiber connotes both immediately.”
Dexcraft provides custom carbon composite manufacturing. The company also supplies pre-cured sheet laminates and other standard products for the automotive aftermarket, sporting goods and consumer goods markets.
Related Content
-
Infinite Composites: Type V tanks for space, hydrogen, automotive and more
After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.
-
Plant tour: Joby Aviation, Marina, Calif., U.S.
As the advanced air mobility market begins to take shape, market leader Joby Aviation works to industrialize composites manufacturing for its first-generation, composites-intensive, all-electric air taxi.
-
Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures
The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.