General Plastics Mfg. Co.

4910 Burlington Way
Tacoma , WA 98409 US


How Light Can You Go? 3 Ways to Push the Boundaries of Automotive and Aerospace Lightweighting

Fuel economy is a hot topic for both manufacturers and consumers. In the automotive market, countries all over the world are implementing more stringent fuel consumption standards for passenger cars and light trucks. Specifically in the United States, the Corporate Average Fuel Economy (CAFE) regulations aim to reach a fuel efficiency of 54.5 mpg for passenger vehicles by 2025. However, the latest reports from the U.S. Environmental Protection Agency (EPA) show the current fuel economy for cars stands at 28.5 mpg, so the urgency for innovation is real and ever present. The aerospace industry also holds similar goals for improving fuel efficiency. As the cost of labor and other operating expenses continues to rise for U.S. passenger airlines, lowering fuel costs has one of the most significant impacts on growing profitability and staying competitive.

To meet these ever-increasing demands of cost savings, performance, and sustainability, lightweighting is a common practice used by both automotive and aerospace manufacturers. By decreasing the weight of cars and aircraft, less fuel is needed to move the transportation vehicle. According to the U.S. Department of Energy Vehicle Technologies Office, “A 10% reduction in vehicle weight can result in a 6%-8% fuel economy improvement. Using lightweight components and high-efficiency engines enabled by advanced materials in one quarter of the U.S. fleet could save more than 5 billion gallons of fuel annually by 2030. ”

In many ways, the aerospace market pioneered the lightweighting race and therefore has quite the head start. In 2009 the Boeing 787 Dreamliner consisted of a 50% composite structure, whereas in 2013 the Airbus A350 was constructed with 53% composite materials in order to improve fuel economy. Now the automotive industry is also ramping up its lightweighting efforts, as seen by the 2019 GMC Sierra’s advanced carbon fiber/thermoplastic composite truck bed and the 2015 Ford F-150 with its 700-pound-lighter aluminum frame. Ford took a big step into the unknown when replacing steel with military-grade aluminum, but the risk paid off and F-150 sales reached an all-time high after the release of the new lightweighted design, proving that alternative lightweighting materials are a viable option to seriously consider.

Ultimately, manufacturers are looking for materials that satisfy the quality and performance requirements for their project, without adversely affecting the project deadline or budget. The rest of this whitepaper discusses three methods for lightweighting, as well as practical applications for the automotive and aerospace industries.


At General Plastics, we’ve seen lightweighting solutions successfully implemented using three different techniques. These methods may be used separately or in conjunction with one another.


The first approach is the one most people think of when they hear the term “lightweighting.” However, oftentimes design engineers will only consider metals and alloys by default because of their higher strength. Take a look at this chart that compares the strength and density of different automotive materials:


Tensile Strength and Density of Automotive Lightweighting Materials (source: Granta Design)

Clearly, materials science has progressed such that there are other viable options in the composites world. Depending on the strength, safety, and other requirements, different, lighter-weight materials can be considered for each component of cars and airplanes. For example, rather than use solid metal or plastic decorative parts in a vehicle, they can be replaced with components made out of high-density polyurethane foam and coated to look like the real thing. If you multiply that lightweighting adjustment across an entire passenger jet, suddenly the weight reduction turns into pounds and the fuel reduction turns into profitability.


This second lightweighting method is not just referring to a decrease in overall vehicle parts. If anything, advancements in technology has increased the amount of electronic components in cars – such as for wireless communications, advanced driver-assistance systems (ADAS), and vehicle electrification – making weight reduction even more important to offset these additions. So if making a vehicle with fewer components overall isn’t likely, consider choosing a lightweighting solution where the material itself can have fewer components.

For example, honeycomb panels made out of paper blends and composites are often a popular choice for lightweighting due to their high strength. However, since the core consists of a grid of large, open cells, it must be wrapped in multiple adhesive and skin layers to prevent water and dust intrusion. These films must also be thick enough to create a smooth surface and stop the transfer of the honeycomb pattern from appearing.

Materials such as polyurethane foam can be produced with a closed-cell structure that does not absorb water and therefore won’t rot, warp, bow, or delaminate from water intrusion. Plus, the foam can have self-skinning properties that automatically seals and is ready for painting or coating to achieve the appropriate appearance and texture. The fewer manufacturing steps it takes to create a component, the greater the cost and time savings.


Environmental impact and sustainability concerns often go hand-in-hand with fuel economy considerations. How much waste is being produced to achieve a lighter truck or helicopter? With some materials, such as wood or honeycomb panels, parts are created by building up a block with the appropriate dimensions and then machining it down to the actual shape. This method can result in a lot of discarded excess. Depending on the lightweighting material you select, it may be less wasteful and more cost-efficient to use other processing techniques. Consider the following manufacturing methods used for high-density polyurethane foam:

  • Custom molding : Rather than machining a sheet stock or block into the component’s shape, a custom tool is designed to mold the part from a lightweighting material. This technique produces high levels of detail, complex shapes without machining, and a smooth or textured skin as desired. Parts can be made with naked skins ready for further processing or painting, or in-mold painting can be performed for even greater process efficiency.
  • Thermoforming : This drape or mold forming process is easy to use and ideal for shaping shallow slopes and angles where machining would be more wasteful or time-consuming. This method can form parts that require large sheets of foam and complexity, all in a matter of minutes.
  • Sandwich panel layups: Commonly used in composite material production, this process uses standard vacuum bag layup or heated presses at temperatures above 275 Note: certain lightweighting materials like poly-ether imide (PEI) may have good strength properties but are not suitable for higher processing temperatures.

Regardless which manufacturing method you use, the end product still has the same weight and compressive strength. However, the ideal solution can produce less waste, have less carbon footprint, use raw materials from recycled goods, and so on.


General Plastics offers a wide selection of rigid and flexible polyurethane foams that come in a variety of densities, thermal properties, surfaces, and other characteristics to best fit your application needs.


For aerospace markets, General Plastics offers the LAST-A-FOAM® FR-3800 FST foam and WSF-1121 impact energy absorption foam that meet the latest FAA and FDA requirements. The FR-3800 was specifically developed to meet FST and OSU 65/65/200 safety standards concerning flammability, smoke density, toxicity, and heat release. Due to its unique physical properties of density, strength, stiffness, and FST/OSU compliance, the FR-3800 is a cost-efficient core material alternative to honeycomb panels, poly-methytl chloride (PMI), poly-ether imide (PEI), and polyethersulfone (PESU).

Our build-to-print flight deck and passenger cabin molded parts are found all over today’s aircraft in many different areas, such as:

  • Durable padding for heads-up display covers, headliners, post pads, kick strips and assist handle covers
  • Aviation gap filler that provides cushioning and noise reduction in overhead storage bins, passenger cabin dividers, galleys, and lavatories.


Explore an interactive 360° graphic to find out where polyurethane and foam core products are used in aircraft interior solutions.

Polyurethane foam can easily be used to substitute metal and plastic decorative items in aircraft. For instance, foam core covered with a brushed metal coating can replace the aluminum trim around seatback screens – reducing the weight by more than 66% and the price by 33%.

In another example, an aerospace OEM customer spoke to us about using polyurethane foam instead of heavier plastics for the armrest extensions under the pad. General Plastics worked with them every step of the way to develop the optimal solution that met their specifications. Because of the cost, weight, and fuel economy savings, the customer was highly satisfied with the result and decided to standardize on our lightweighting material for that component moving forward.


In the automotive market, polyurethane foams can be used to replace thermoplastic elements in the car, such as the brackets that hold different components in place in the dashboard and door panels. These pieces are not structural, so replacing these functional parts with polyurethane foam will not compromise the safety requirements of the whole dashboard or door panel.

In terms of General Plastics products, we commonly recommend LAST-A-FOAM® FR-7100 Multi-Use Core Series because its many available densities make it applicable nearly everywhere in vehicles, such as cores for load floors, seat backs and rigid support components, dashboard, door panels, visors, antenna housings, and head liners. The FP-8000 Energy Absorption Semi-Rigid Series can be used in thin sheets for sound dampening in doors.

For thermoforming applications, the FR-4300 Thermoformable Board Series can be used to make bucket seats and speaker boxes. And for custom molded parts, both the FR-3700 flame-retardant rigid polyurethane foam and WSF-1121 impact energy absorption foam can be used under thermoformed ABS plastic for pads on doors, arm rests, consoles, and visors. These foam series each have unique enhancements and performance improvements to fit a variety of purposes, and can significantly reduce weight and costs compared to other materials.


Instead of solid plastic or metallic parts, consider using budget-friendly composite components that can make vehicles not only lighter but also just as strong.



In aerospace and automotive markets, lightweighting is becoming increasingly important to OEMs, Tier 1 and 2 suppliers, and manufacturers to create new products that meet growing industry needs and new government standards. Lightweighting materials such as polyurethane foam must offer not only weight reduction, but also enhanced performance and overall cost savings. Also, using these alternative materials is rarely a one-to-one drop-in replacement, due to differences in properties, processing, supply chain, and so forth. However, with the guidance of materials experts like General Plastics, we can walk you through the entire process from planning to design to manufacturing.

With more than 75 years of experience working with manufacturers on complex, cutting-edge projects, General Plastics has the extensive knowledge to help you figure out your lightweighting objectives and solution. Not only do we produce a wide selection of innovative rigid and flexible polyurethane foam solutions, but our team also offers complete in-house production services to deliver full assemblies and parts.

A Message from General Plastics Mfg. Co.

Filling The Need for Consistent, Reliable and Cost-Effective Composite Core Material in Sandwich Panels

Customer Information: Founded in 1985, ACP Composites is a women and family-owned composite materials fabrication company that specializes in the design and manufacture of composite structures, plates, flat panels and other advanced composite products.

Composite Core: Factors to Consider When Choosing Core Material for Your Application

Composite core materials are used to complete the function of engineered structures by making up for a type of design or performance need, whether it’s weight reduction, providing energy absorption, impact resistance or adding stiffness.

Next Generation Underwater System Provides Advancements in Design, Functionality, and Capability with Subsea Bouyancy Foam

Customer Information:  Strategic Robotics Systems (SRS) was founded in 2015 in response to a need for underwater systems which combine the functionality of a remotely operated vehicle (ROV) and an autonomous underwater vehicle (AUV). SRS’ FUSION is an unmanned underwater vehicle (UUV), the only one of its kind that provides a comprehensive sensor suite which includes imaging, navigation, and communication sensors.

A One-Stop Shop for Turning Polyurethane Materials into a Final Product

When design engineers work with General Plastics, we often delve straight into the technical details of the intended application and our polyurethane materials.

Customer Service: Is Your Polyurethane Supplier Treating You Right?

When it comes to choosing the right material, design engineers tend to focus primarily on the material properties and cost.

Dealing with Supply Chain Inefficiencies for Composite and Polyurethane Materials

Streamlining the supply chain is one of the top challenges of many companies.

General Plastics Manufacturing Company Receives “Supplier Of The Year” Award From Boeing

 General Plastics Manufacturing Co., a supplier of high-performance polyurethane foam products and built-to-print composite parts, was recognized by The Boeing Company as Supplier of the Year in the Outstanding Performance category.

Machining vs Cast Molding: Choosing the Best Manufacturing Method to Process Polyurethane Foam

THE SURPRISING IMPACT OF MATERIAL PROCESSING When it comes to creating new products, most manufacturers agree that solidifying a bulletproof design and selecting the right materials are critical to the project’s success.

Reduce Costs and Develop More Accurate Tooling with PU Foam

In manufacturing, tooling is the process of designing and engineering the tools necessary to produce the parts or components needed to develop the final product.

General Plastics to Showcase Newly-Launched High-Temp, Low CTE Tooling Board at JEC World 2019 in Paris, France

General Plastics to Showcase Newly-Launched High-Temp, Low CTE Tooling Board at JEC World 2019 in Paris, France Polyurethane foam innovator will also highlight various composite applications of its high-performance LAST-A-FOAM® rigid and flexible polyurethane foam Tacoma, Wash. – February 19, 2019 - General Plastics Manufacturing Company, manufacturer of LAST-A-FOAM® rigid and flexible polyurethane foam sheet stock, built-to-print composite assemblies and finished custom parts, will be at the JEC World 2019 Composites Show in Paris, France on March 12 – 14, 2019.

Fast, Economical Tooling Options for Prototyping and Custom Builds

For manufacturing industries such as aerospace, automotive, marine, and wind energy, prototyping is a familiar part of the product development process, commonly used for R&D testing, product demonstrations, and regulatory certifications.

General Plastics Launches High-Temperature, Low CTE LAST-A-FOAM® FR-4800 Tooling Board

LAST-A-FOAM® FR-4800 offers a dimensionally stable, thermally superior tooling foam as a viable material alternative to metallic tooling.

General Plastics President/CEO Mitchell Johnson, Ph.D., to Speak on Leadership Panel at the Foam Expo Conference March 26 – 28, 2019

Mitchell Johnson, Ph.D., President/CEO of General Plastics Manufacturing Company will be one of the speakers at the leadership panel, Reducing Material & Equipment Cost While Improving Foam Capabilities, on March 26, 2019, 10:00 am, Track 1, at Foam Expo North America in Novi, Michigan. “The topic is timely given the current market pressures caused by increasing cost of raw materials while ensuring that we continue to deliver quality products,” said Dr.

LAST-A-FOAM Product Finders

Unsure of what product best fits your application?

General Plastics Awarded AS9100 Revision D Quality Management System Certification

Polyurethane foam innovator extends its quality process commitment beyond products to entire customer experience and assure compliance with multiple industry standards.

General Plastics to Feature its FST/OSU-Compliant Rigid Foam Series, Lightweight Core Materials and Custom Molded Flyaway Parts at Aircraft Interiors Expo 2018

Polyurethane foam innovator and producer of flame-retardant, lightweighting core materials for aerospace applications will also present its expanded production capabilities and dielectric foam series for radio-frequency applications.

General Plastics to Spotlight Cost-Saving Core Materials for Light-Weighting Applications at JEC World

Nadcap-certified manufacturer of high-performance polyurethane foam products will also showcase its RF-2200 Dielectric Foam Series for radio-frequency applications and expanded production capabilities.

General Plastics Features its New Polyurethane Dielectric Material with High Thermal Processing Properties at CAMX 2017

General Plastics Manufacturing Co., global supplier of high-performance polyurethane foam products and composite parts, will be at booth R46 to showcase the new LAST-A-FOAM® RF-2200, a lightweight material that provides an RF-transparent protective layer for radome and antenna applications.

General Plastics Manufacturing Company Awarded Nadcap Accreditation

General Plastics received Nadcap accreditation for Measurement and Inspection for its Coordinate Measuring Machine (CMM)  TACOMA, Wash. – September 25, 2017 – General Plastics Manufacturing Company, global supplier of high-performance polyurethane foam products and composite parts, is proud to announce that it received the Nadcap accreditation for Measurement and Inspection (AC7130 Rev. 1), specifically for its Coordinate Measuring Machine (AC7130/1 Rev A.). The Nadcap designation allows General Plastics’ inclusion in the Performance Review Institute (PRI) Qualified Manufacturer’s List (QML), joining a group of only 61 companies in the nation to attain this standard.

Custom Rigid Molded Parts Ace Cost, Delivery and Detail Requirements

What do munitions storage structures, faux-wood shutters, kayak paddles and fuel floats have in common?

General Plastics’ Polyurethane Foams Chosen for Deep Space and Defense Applications

In 2016, Promontory, Utah, nozzle plugs made from General Plastics’ LAST-A-FOAM® FR-4300 played an important role in protecting rockets for NASA’s Space Launch System (SLS). General Plastics’ customer, Orbital ATK, a global leader in aerospace and defense technologies, is producing the five-segment solid rocket boosters for the 322-foot SLS – the most powerful motors ever flown.

General Plastics Debuts Polyurethane Dielectric Material with High Thermal Processing Properties for RF Communications and Radome Applications

LAST-A-FOAM® RF-2200 series offers high-performance, lightweight insulative material with superb dimensional stability for protecting sensitive electronics in high-reliability environments.

Customer Success Video: How General Plastics helped Orbital ATK find a cost-effective product that met their specifications and their reliability and manufacturing system requirements.

Shaping Ideas into Flyaway Aerospace and Defense Solutions General Plastics’ LAST-A-FOAM® polyurethane foam products has a rich history in successful aerospace, military and defense applications, and have proudly supported companies like Orbital ATK in space travel and exploration.

General Plastics to Feature Fire, Smoke, Toxicity and OSU-Compliant Foam Series at SAMPE Seattle May 23-24

Locally-based leading manufacturer of flyaway polyurethane foams and build-to-print molded parts will also spotlight affordable, innovative core materials and tooling boards ideal for diverse aerospace applications.

General Plastics to Present Rigid and Flexible Foam Products and Flyaway Build-to-Print Parts at Aircraft Interiors Expo, April 4-6, 2017 in Hamburg, Germany

Polyurethane foam pacesetter also highlighting rigid and flexible molded parts and FAA-certified testing capabilities Tacoma, Wash. – March 30, 2017 – General Plastics Manufacturing Company, a recognized supplier of high-performance rigid and flexible foams and build-to-print parts to the aerospace industry, is looking forward to being a part of the Washington State Department of Commerce delegation at the 2017 Aircraft Interiors Expo in Hamburg, Germany, April 4-6.

LAST-A-FOAM® FR-7100 Multi-Use Foam Series: The economical, easy-shaping multitasker

General Plastics’ LAST-A-FOAM® FR-7100 multi-use polyurethane foam boards ably fill the bill for low-cost, easily finished, uniform stock material that won’t warp, twist or bow, whether under process or over time.

General Plastics to Showcase Rigid and Flexible Foam Products at JEC World To Address Composite Industry Challenges

Polyurethane foam innovator also highlighting its rigid and flexible molded parts and FAA-certified testing capabilities Tacoma, Wash. – February 21, 2017 - General Plastics Manufacturing Company, leading provider of high performance rigid and flexible polyurethane foam and build-to-print parts, will participate in this year’s JEC World International Composites Event in Paris, France on March 14 – 16, booth R39a in Hall 6.

In the Making: Padded and Flexible Parts for Aircraft Interior Applications

Extending from the flight deck in the fore to lavatories in the aft, General Plastics’ flexible polyurethane foam parts play integral yet unsung roles in today’s aircraft.

No Bones About It: Polyurethane Foam is a Better Medium for Orthopedic Models

Traditional Media and Their Drawbacks Common materials for orthopedic testing and education – most often, cadaver specimens, but also animal bones and wood – while utilitarian, are far from ideal for today's researchers and students.

General Plastics Announces the Promotion of Mitchell Johnson, Ph.D. to Company President as it Celebrates the Company’s 75th Year

Leading manufacturer known for research and development, quality systems and solving customers’ most vexing challenges is poised to advance new materials and expand in new markets TACOMA, Wash. – November 28, 2016 – General Plastics Manufacturing Company, a leading global supplier of rigid and flexible polyurethane foam materials and build-to-print parts, marks its 75th anniversary on December 1, 2016 with the announcement of the promotion of Mitchell Johnson, Ph.D. to company president.


Manufacturer of rocket boosters for NASA's Space Launch System proves protective qualities of GP foam in nozzle closures THE APPLICATION:  Orbital ATK (NYSE: OA) is a global leader in aerospace and defense technologies.

General Plastics’ Rick J. Brown, Ph.D. to Present Paper on Crash and Fire Protection for Nuclear Transportation Containers September 20 at PATRAM 2016

Polyurethane foam innovator will also spotlight its flame-retardant foam series for nuclear material applications and transportation TACOMA, Wash. – September 12, 2016 – Nuclear Packaging Manager Rick J.

General Plastics' High-temperature Tooling Board Series

LAST-A-FOAM® FR-4700 HT Tooling Board Series is a rigid, high-temperature, hybrid tooling board that is designed for prototype machining, prepreg composite lay-up tooling, vacuum form tooling, tool proofing, pattern making and master model making.

LAST-A-FOAM FR-6700 Aerospace Grade Series

LAST-A-FOAM FR-6700 is a flame-retardant rigid foam for aircraft composite core withstands process temperatures up to 250°F.

General Plastics' Flame-Retardant Polyurethane Foam Plays Pivotal Role in Successful Ground Test of World's Largest Solid Rocket Motor for NASA Space

LAST-A-FOAM FR-4306 polyurethane foam tapped for nozzle closures in Orbital ATK's five-segment rocket boosters for NASA missions to explore deep space.

Tooling Foam Empowered Creation & Test of Prototype Missile Aeroshell Cover at Mach 4+ Speed

DEFENSE SUBCONTRACTOR SLASHES THREE-FOURTHS OF ITS PROTOTYPING COSTS & TIME USING GP's MULTI-USE CORE FOAM The Application: Applied Aerospace Structures Corp. (AASC) specializes in the design, fabrication and testing of lightweight structural assemblies, focusing on high-performance engineered structures for space, aircraft and ground systems.

High-Temp Tooling Foam and Machining Services Help Aerospace Innovator Compress its Research and Development Cycle

General Plastics’ High-Temperature Tooling Foam and Machining Services Help Aerospace Innovator compress its Research and Development Cycle Faster True-to-Life Prototyping Speeds New Products to Market Thanks to Expertly Machined High-Temp Tooling Board The Application: Based in Everett, Wash., BLR Aerospace specializes in aerodynamic performance enhancements for helicopters and turbine-powered aircraft.

As Seen In CompositesWorld

Composite sandwich panels enable flexibility in medical table design
Polyurethane foam core provides a cost-effective option for ACP Composites’ specialized medical positioning table design.

CAMX 2020 exhibit preview: General Plastics
General Plastics Manufacturing Co. is showcasing its LAST-A-FOAM core products, custom molding capabilities and high-temperature, low-CTE tooling board.   

Composites suppliers, fabricators respond to coronavirus
Companies across the composites industry supply chain share how the COVID-19 pandemic is affecting their businesses, and how they are available to help.

CAMX 2019 exhibit preview: General Plastics
General Plastics Manufacturing Co. is showcasing its new LAST-A-FOAM FR-4800 tooling board at its CAMX 2019 booth.

General Plastics' LAST-A-FOAM FR-4800 tooling board.

CAMX 2018 preview: General Plastics
General Plastics (Tacoma, WA, US) is featuring its new high-temperature, low-CTE LAST-A-FOAM FR-4800 tooling board.

General Plastics' LAST-A-FOAM 4800 tooling board.

General Plastics launches ultrahigh-temperature tooling board
General Plastics Mfg. Co. (Tacoma, WA, US) expanded its line of high-temperature tooling board materials with the introduction of LAST-A-FOAM FR-4800, an autoclave-capable, high-density epoxy-urethane foam designed for master plug manufacturing, tool proofing, vacuum form tooling, pattern making, and short-run production tooling applications.


CAMX 2017 preview: General Plastics
General Plastics Mfg. Co. (Tacoma, WA, US) is showcasing its new LAST-A-FOAM RF-2200, a lightweight material that provides an RF-transparent protective layer for radome and antenna applications.

JEC World 2017 at the Paris Nord Villepinte Exhibition Center

JEC World 2017 exhibit preview
JEC World will be held March 14-16 in Paris. CW previews some of the products and technologies that will be at the show.

JEC World 2016, the full report
CompositesWorld's editors report on the technologies and products that caught our eye at JEC World 2016, in early March.

composite tooling

Composites 101: Tooling
Composite parts are formed in molds, also known as tools. Tools can be made from virtually any material. The material type, shape and complexity depend upon the part and length of production run. Here's a short summary of the issues involved in electing and making tools.

CFRP camera boom enables safe spill inspection
NONA Composites’ 32m REACH structure meets tight remediation schedule at DoE radioactive waste storage site.

Composite tooling without oven or autoclave
No Oven No Autoclave technology has been demonstrated in tooling for NASA, including multiple thermal cycles and use for curing epoxy infused out-of-autoclave parts.

Pierce County trains skilled workers through collaborative curriculum building
Bruce Kendall, the president and CEO of the private, nonprofit Economic Development Board (EDB) for Tacoma-Pierce County (Wash.), reports on the success of a collaborative training curriculum development program that produces skilled workersfor the aerospace industry.

Tooling boards improve processes
In the composites industry, many parts are the product of one-off or few-of-a-kind production programs. In response, tooling material suppliers today provide an increasing variety of relatively inexpensive materials grouped under the heading of tooling board.

Isotruss bicycle

SAMPE 2009 Product Showcase
Showgoers at the SAMPE 2009 Conference and Exhibiton in Baltimore, Md. found many suppliers undeterred by poor economic news. 

Tooling Board

Taking Up Tooling Boards
Tooling Board ManufacturersEpoxy and polyurethane tooling boards are a standby for creating models or low-run-production tooling.

SAMPE exhibitors in Long Beach

SAMPE 2005 Product Showcase
SAMPE's U.S. Symposium and Exhibition highlights technological innovation and market expansion.

Blast protection

Blast protection for large structures
Hardening of public buildings against terrorist threats represents a potentially huge market for antiballistic composites.

Balsa wood, sorted by density, is sawn in preparation for gluing into core sheets.

Getting To The Core Of Composite Laminates
A wealth of low-cost core solutions are available for high-performance sandwich structures.

Product Categories of General Plastics Mfg. Co.

Adhesive bonding
Aerospace, aircraft interior
Aerospace, flight control surfaces
Aerospace, radomes
Automotive, body panels & substructures
Automotive, interior (seats, IPCs, floor panels, etc.)
Backup structures
Composite, carbon fiber/epoxy
Composite, fiberglass
Composite, other
Composite, prepreg
Cutting, finishing, and machining
Flame/smoke toxicity testing
Foam core, polyurethane
Honeycomb, foam-filled
Infrastructure, composite
Mandrels, other
Mandrels, segmented
Master pattern material, other
Master pattern material, polymeric
Materials analysis
Moldmaking and patternmaking
Other fabricating services
Other tools/tooling materials
Resin transfer molding (RTM)
Resin transfer molding (RTM)
RTM/resin infusion
Tooling board
Tooling prepreg
Vacuum-assisted resin transfer molding (VARTM)
Vacuum-assisted resin transfer molding (VARTM)