General Plastics Mfg. Co.

4910 Burlington Way
Tacoma , WA 98409 US


Reduce Costs and Develop More Accurate Tooling with PU Foam

In manufacturing, tooling is the process of designing and engineering the tools necessary to produce the parts or components needed to develop the final product. It can include work-holding tools such as jigs or fixtures; cutting tools such as milling and grinding machines; dies, molds, and patterns for sheet metals and plastics; and welding and inspection fixtures. There are an infinite number of methods for tool development and numerous materials, ranging from composites to hard metals that can be used to make these tools.

Tooling is a keystone technology used in almost every major market – from transportation to electronics to food processing – and is often a routine part of the design and production process. With so many other factors to consider, it’s easy to fall back on the default tooling methods of old. But for many organizations, moving to an alternate tooling material or using a new process for designing and developing tooling, could help you more efficiently deliver that bullet-proof design, saving both time and money.

Across industries, more and more manufacturers are moving to composite, or “soft” tooling methods with materials such as polyurethane foam. While this may not be the right choice for all applications and tooling needs, there are numerous instances where using polyurethane foam either as the final tool or to aid in developing the final hard tool can help you reduce costs, iterate faster, or produce a more accurate tool.

This whitepaper examines the key considerations to evaluate your tooling needs and how to best take advantage of tooling strategies and techniques using polyurethane foam.


Tooling is a critical part of the manufacturing process. Using poor quality tooling will likely result in inferior components being constructed that are prone to malfunction, fail under stress, or unable to meet project requirements or specifications. This can result in a large volume of parts being wasted or even require you to begin production all over again.

The quality of the finished part, its properties, the speed and accuracy with which the part can be produced, and repeatability in high-volume runs all depend on the precision and characteristics of your tooling. Using the correct process and right material to create those tools is critical to ensure properly functioning parts. In short, to create the best product, you must design the best tools, engineered to the highest quality, for the job.


There are many considerations when selecting the right tooling for your application, but here are a few of the most essential questions to ask yourself:

  • How will the tool be used and what performance requirements are required for that use?
  • What material best meets those requirements?
  • What are the dimensions of the finished tool?
  • What is your production rate?
  • What are the curing conditions?
  • What are your tolerance levels?
  • How many times does the tool need to perform its operation?
  • What contours and integrated functions does the product have?
  • What is the required surface finish?
  • What is the time frame from prototyping to production?
  • What is your budget?

Selecting the appropriate method ultimately depends on how you are using the tool and achieving a perfect (or near perfect) match of coefficient of thermal expansion (CTE), dimensional complexity, production rate and curing conditions, tolerance levels and surface finish, among others. The answers to these questions will guide you to the correct process for finding this match and engineering the right tooling that will lead to the production of high-quality, properly functioning parts.


There are two general types of tooling—hard tooling and soft tooling. Hard tooling involves using metallic materials such as steel, aluminum, or metal alloys like Invar; while soft tooling materials are typically composite materials such as fiberglass, high-density foam, machinable epoxy boards, or wood/plaster models.

High density tooling foam (left) and Polished graphite Hexcell Corporation HexTool®. (right)

Historically, hard tooling has been the go-to standard in the manufacturing industry. It’s durable, produces good surface finish, and stands up to a lot of pulls for high-production runs (e.g., up to 1,500 autoclave cycles for steel tools). Plus, metals generally have low CTEs, which works well when producing components that also have a low CTE, require repeated high-temperature cycling, or demanding tolerances.

The CTE measures the fractional change in size per degree change in temperature at a constant pressure.

By matching the CTE values of the tooling and production materials, the materials will expand and contract at the same rates when exposed to varying curing temperatures – resulting in high-quality parts with precise dimensional tolerances. Just as you should select a hard tooling method when producing components with low CTE, soft tooling options are often a better choice when manufacturing composite parts to reduce CTE mismatch and maintain dimensional accuracy during a cure. The CTEs of common tooling materials are shown below.

Relative CTEs of Common Tool Materials (Source:

Compared to hard tooling, soft tooling is easier and faster to machine into complex shapes and can quickly be reworked or modified as needed. The soft tooling raw material, as well as the process of machining it, also comes with a lower price tag, and is easier to maneuver with its lighter weight.

These benefits are why more and more manufacturers are moving to lighter-weight soft tooling for prototyping and other time-sensitive projects, creating tools with large or complex designs, production runs with low-part volumes, or when low-cost solutions are required.


While a variety of materials can be used for soft tooling, polyurethane foam tooling boards (also known as high-density urethane or HDU), such as General Plastics LAST-A-FOAM®, is a versatile option. LAST-A-FOAM® tooling boards are a preferred alternative for large-sized tools where material, processing, handling, and shipping costs of metal are an issue, or in limited-run tooling where metal tools are cost prohibitive. These tooling boards are also ideal as master models and composite tooling in applications ranging from low-temperature layups to high-temperature autoclaves.

Plus, with projects that require tight turnaround times, foam tooling can significantly shorten your R&D cycles and get your product to market faster. Let’s look at three applications where LAST-A-FOAM® polyurethane foam is the ideal option.

Foam Master Molds

It is often a challenge to develop tooling that can meet tight tolerances yet withstand high temperatures and repeated curing cycles. While the ability to easily manipulate and shape polyurethane foam makes it a great fit for creating a tool with tight tolerances or unique shapes, it will not withstand high temperatures or repeated curing cycles like a metallic or composite tool can. Nevertheless, LAST-A-FOAM® high-temperature tooling boards have proven their value as a master mold due to its ability to withstand high-heat prepreg and autoclave curing. It serves as an excellent substrate because of its high glass transition temperature (Tg), high compressive modulus, and predictable CTE.

These tooling boards are low cost and can be machined to a tight tolerance and into complex shapes. If changes are needed on the master tool, the material can be easily modified and reused at a fraction of the cost of metal tooling. An example of the steps to create a master mold using LAST-A-FOAM® is shown below.

An example of using LAST-A-FOAM® as a master mold to create a composite HexTool®.



Companies typically go through several iterations when developing new parts to ensure they perform as intended. Thus, it is crucial to choose tooling materials that are cost effective and easy to modify, allowing for various design modifications while meeting project timelines and budgets.

LAST-A-FOAM® is a cost-effective material that is not only extremely stable and precise, but it also offers the flexibility to cut and re-cut as you make product iterations. For example, in experimental or new programs in the aerospace industry where there are typically several design iterations upfront, using LAST-A-FOAM® is most beneficial because you can iterate prototypes quickly and inexpensively. It also has applications in the transportation industry, with nearly every major automotive company using LAST-A-FOAM® for their prototyping work.

Students at the University of Utah used LAST-A-FOAM® to build a mold for the carbon fiber outer shell of their formula SAE racecar.

While choosing a less expensive and less permanent material is an option, it should not be the only consideration. Staying away from materials that may soften or deform in applications where the material’s temperature stability at a high temperature is key. This will create wide variances in tolerance and produce parts with unpredictable dimensions.

Surface Verification Tool

Another soft tooling application is to use the polyurethane foam as a surface verification tool. Before beginning the time-consuming process of machining hard tooling and cutting an expensive piece of metal, it’s best to use a less expensive surface verification tool to ensure your tool path is accurate. The ability to easily machine and cut LAST-A-FOAM® makes it a great fit for surface verification.

Layup Molds and Mandrels

For creating layup molds and mandrels, the LAST-A-FOAM® tooling board series is a great option because of the foam’s dimensional stability and cell structure and the ability to easily machine it. Since most layup mold and mandrel applications have tight tolerances, ambient or low temperature cures, and a low number of pulls, LAST-A-FOAM® is an effective material for these applications.

For example, major marine manufacturers use LAST-A-FOAM® because it bonds easily and securely to fiberglass laminating resin systems. The tough, grain-free tooling board has an excellent bonding ability that allows manufacturers to create the oversized blocks needed for molds for large hulls.

Additionally, wind turbine and aircraft manufacturers use LAST-A-FOAM® when developing tools to create spars that run the length of the wing of an airplane or wind turbine to prevent it from buckling under stress. LAST-A-FOAM® is ideal for construction of these spars because of it allows you to easily accommodate their complex hollow tube shape.

To make the spars, a polyurethane foam mold is created, then the carbon fiber is laid up on the tool and cured. Next, the foam is extracted, which reveals the layup tool that is used for creating the spars. A resin is then added, the tool is vacuum bagged, and then it is cured, usually at room temperature, before being demolded and the finished part is extracted.


BLR Aerospace specializes in creating aerodynamic performance enhancements and exterior modifications for helicopters and turbine-powered aircraft. To quickly and profitably develop new aerodynamic cowlings, the company required a stable, easily machined tooling material for prototyping composite parts – specifically large-scale, life-sized carbon fiber and fiberglass parts. Previously, the company used metallic tools, which were time-consuming and expensive to produce. Their design engineers sought an affordable alternative to more permanent tooling to allow for various design iterations, while factoring cost and time requirements.

An example of a BLR aircraft in flight.

After trying out other tooling materials, BLR zeroed in on General Plastics’ LAST-A-FOAM® FR-4700 High-Temperature Tooling series because of its temperature stability, uniformity, and excellent machinability. According to lead project engineer Russell Bezzo, “Machining tools using this foam allows us to lay up the carbon-fiber and composite parts, put them in the oven and make true-to-life prototypes using the actual materials that we’ll use in production.” Moreover, the lower-weight tools were less cumbersome to handle when making prototypes and cost less to ship to their composite manufacturing facilities.

BLR Aerospace also took advantage of General Plastics’ expertise and CNC machining capabilities to make its prototype tools, which simplified the tooling process and expedited the timeline. Overall, relying on General Plastics for both its high-temperature tooling foam and CNC machining capabilities allowed BLR to achieve tighter tolerances, faster design iterations, shorter R&D cycles, and greater cost efficiencies.


Your choice of tooling material can impact product quality, design and production costs, and on-time project completion. If you’re looking for a cost-effective and fast time-to-market option for your limited run tooling, LAST-A-FOAM® may be the right choice for you. LAST-A-FOAM® comes in a number of densities that withstand a wide range of temperatures up to 400°F

It is easily machined into complex shapes with fine details, and can be modified by simply bonding on additional foam with adhesive, filling voids, or carving off any excess. Lead times are generally shorter since the machining process is faster and the material is readily available. In addition, LAST-A-FOAM® is lightweight and much easier to handle, especially for large parts that need to be maneuvered around a factory floor.

Its high Tg and low CTE make it suitable for use in vacuum-forming applications, whereas other urethane products may soften or deform. It has an excellent bonding ability to create monolithic tools and molds for large-scale projects and is non-abrasive, uniform from sheet to sheet, and grain-free to support fine surface finishes with virtually any coating system.

Based on its material properties, low weight, and ease of accommodating complex shapes, LAST-A-FOAM® could serve as a viable alternative to traditional metallic tools, saving you time and money on your next tooling project.

To find out if composite tooling suits your project requirements, read our LAST-A-FOAM® Tooling & Molds User Guide or contact us for a free consultation to guide you through the tooling decision process.

A Message from General Plastics Mfg. Co.

Filling The Need for Consistent, Reliable and Cost-Effective Composite Core Material in Sandwich Panels

Customer Information: Founded in 1985, ACP Composites is a women and family-owned composite materials fabrication company that specializes in the design and manufacture of composite structures, plates, flat panels and other advanced composite products.

Composite Core: Factors to Consider When Choosing Core Material for Your Application

Composite core materials are used to complete the function of engineered structures by making up for a type of design or performance need, whether it’s weight reduction, providing energy absorption, impact resistance or adding stiffness.

Next Generation Underwater System Provides Advancements in Design, Functionality, and Capability with Subsea Bouyancy Foam

Customer Information:  Strategic Robotics Systems (SRS) was founded in 2015 in response to a need for underwater systems which combine the functionality of a remotely operated vehicle (ROV) and an autonomous underwater vehicle (AUV). SRS’ FUSION is an unmanned underwater vehicle (UUV), the only one of its kind that provides a comprehensive sensor suite which includes imaging, navigation, and communication sensors.

A One-Stop Shop for Turning Polyurethane Materials into a Final Product

When design engineers work with General Plastics, we often delve straight into the technical details of the intended application and our polyurethane materials.

Customer Service: Is Your Polyurethane Supplier Treating You Right?

When it comes to choosing the right material, design engineers tend to focus primarily on the material properties and cost.

Dealing with Supply Chain Inefficiencies for Composite and Polyurethane Materials

Streamlining the supply chain is one of the top challenges of many companies.

General Plastics Manufacturing Company Receives “Supplier Of The Year” Award From Boeing

 General Plastics Manufacturing Co., a supplier of high-performance polyurethane foam products and built-to-print composite parts, was recognized by The Boeing Company as Supplier of the Year in the Outstanding Performance category.

Machining vs Cast Molding: Choosing the Best Manufacturing Method to Process Polyurethane Foam

THE SURPRISING IMPACT OF MATERIAL PROCESSING When it comes to creating new products, most manufacturers agree that solidifying a bulletproof design and selecting the right materials are critical to the project’s success.

General Plastics to Showcase Newly-Launched High-Temp, Low CTE Tooling Board at JEC World 2019 in Paris, France

General Plastics to Showcase Newly-Launched High-Temp, Low CTE Tooling Board at JEC World 2019 in Paris, France Polyurethane foam innovator will also highlight various composite applications of its high-performance LAST-A-FOAM® rigid and flexible polyurethane foam Tacoma, Wash. – February 19, 2019 - General Plastics Manufacturing Company, manufacturer of LAST-A-FOAM® rigid and flexible polyurethane foam sheet stock, built-to-print composite assemblies and finished custom parts, will be at the JEC World 2019 Composites Show in Paris, France on March 12 – 14, 2019.

Fast, Economical Tooling Options for Prototyping and Custom Builds

For manufacturing industries such as aerospace, automotive, marine, and wind energy, prototyping is a familiar part of the product development process, commonly used for R&D testing, product demonstrations, and regulatory certifications.

How Light Can You Go? 3 Ways to Push the Boundaries of Automotive and Aerospace Lightweighting

Fuel economy is a hot topic for both manufacturers and consumers.

General Plastics Launches High-Temperature, Low CTE LAST-A-FOAM® FR-4800 Tooling Board

LAST-A-FOAM® FR-4800 offers a dimensionally stable, thermally superior tooling foam as a viable material alternative to metallic tooling.

General Plastics President/CEO Mitchell Johnson, Ph.D., to Speak on Leadership Panel at the Foam Expo Conference March 26 – 28, 2019

Mitchell Johnson, Ph.D., President/CEO of General Plastics Manufacturing Company will be one of the speakers at the leadership panel, Reducing Material & Equipment Cost While Improving Foam Capabilities, on March 26, 2019, 10:00 am, Track 1, at Foam Expo North America in Novi, Michigan. “The topic is timely given the current market pressures caused by increasing cost of raw materials while ensuring that we continue to deliver quality products,” said Dr.

LAST-A-FOAM Product Finders

Unsure of what product best fits your application?

General Plastics Awarded AS9100 Revision D Quality Management System Certification

Polyurethane foam innovator extends its quality process commitment beyond products to entire customer experience and assure compliance with multiple industry standards.

General Plastics to Feature its FST/OSU-Compliant Rigid Foam Series, Lightweight Core Materials and Custom Molded Flyaway Parts at Aircraft Interiors Expo 2018

Polyurethane foam innovator and producer of flame-retardant, lightweighting core materials for aerospace applications will also present its expanded production capabilities and dielectric foam series for radio-frequency applications.

General Plastics to Spotlight Cost-Saving Core Materials for Light-Weighting Applications at JEC World

Nadcap-certified manufacturer of high-performance polyurethane foam products will also showcase its RF-2200 Dielectric Foam Series for radio-frequency applications and expanded production capabilities.

General Plastics Features its New Polyurethane Dielectric Material with High Thermal Processing Properties at CAMX 2017

General Plastics Manufacturing Co., global supplier of high-performance polyurethane foam products and composite parts, will be at booth R46 to showcase the new LAST-A-FOAM® RF-2200, a lightweight material that provides an RF-transparent protective layer for radome and antenna applications.

General Plastics Manufacturing Company Awarded Nadcap Accreditation

General Plastics received Nadcap accreditation for Measurement and Inspection for its Coordinate Measuring Machine (CMM)  TACOMA, Wash. – September 25, 2017 – General Plastics Manufacturing Company, global supplier of high-performance polyurethane foam products and composite parts, is proud to announce that it received the Nadcap accreditation for Measurement and Inspection (AC7130 Rev. 1), specifically for its Coordinate Measuring Machine (AC7130/1 Rev A.). The Nadcap designation allows General Plastics’ inclusion in the Performance Review Institute (PRI) Qualified Manufacturer’s List (QML), joining a group of only 61 companies in the nation to attain this standard.

Custom Rigid Molded Parts Ace Cost, Delivery and Detail Requirements

What do munitions storage structures, faux-wood shutters, kayak paddles and fuel floats have in common?

General Plastics’ Polyurethane Foams Chosen for Deep Space and Defense Applications

In 2016, Promontory, Utah, nozzle plugs made from General Plastics’ LAST-A-FOAM® FR-4300 played an important role in protecting rockets for NASA’s Space Launch System (SLS). General Plastics’ customer, Orbital ATK, a global leader in aerospace and defense technologies, is producing the five-segment solid rocket boosters for the 322-foot SLS – the most powerful motors ever flown.

General Plastics Debuts Polyurethane Dielectric Material with High Thermal Processing Properties for RF Communications and Radome Applications

LAST-A-FOAM® RF-2200 series offers high-performance, lightweight insulative material with superb dimensional stability for protecting sensitive electronics in high-reliability environments.

Customer Success Video: How General Plastics helped Orbital ATK find a cost-effective product that met their specifications and their reliability and manufacturing system requirements.

Shaping Ideas into Flyaway Aerospace and Defense Solutions General Plastics’ LAST-A-FOAM® polyurethane foam products has a rich history in successful aerospace, military and defense applications, and have proudly supported companies like Orbital ATK in space travel and exploration.

General Plastics to Feature Fire, Smoke, Toxicity and OSU-Compliant Foam Series at SAMPE Seattle May 23-24

Locally-based leading manufacturer of flyaway polyurethane foams and build-to-print molded parts will also spotlight affordable, innovative core materials and tooling boards ideal for diverse aerospace applications.

General Plastics to Present Rigid and Flexible Foam Products and Flyaway Build-to-Print Parts at Aircraft Interiors Expo, April 4-6, 2017 in Hamburg, Germany

Polyurethane foam pacesetter also highlighting rigid and flexible molded parts and FAA-certified testing capabilities Tacoma, Wash. – March 30, 2017 – General Plastics Manufacturing Company, a recognized supplier of high-performance rigid and flexible foams and build-to-print parts to the aerospace industry, is looking forward to being a part of the Washington State Department of Commerce delegation at the 2017 Aircraft Interiors Expo in Hamburg, Germany, April 4-6.

LAST-A-FOAM® FR-7100 Multi-Use Foam Series: The economical, easy-shaping multitasker

General Plastics’ LAST-A-FOAM® FR-7100 multi-use polyurethane foam boards ably fill the bill for low-cost, easily finished, uniform stock material that won’t warp, twist or bow, whether under process or over time.

General Plastics to Showcase Rigid and Flexible Foam Products at JEC World To Address Composite Industry Challenges

Polyurethane foam innovator also highlighting its rigid and flexible molded parts and FAA-certified testing capabilities Tacoma, Wash. – February 21, 2017 - General Plastics Manufacturing Company, leading provider of high performance rigid and flexible polyurethane foam and build-to-print parts, will participate in this year’s JEC World International Composites Event in Paris, France on March 14 – 16, booth R39a in Hall 6.

In the Making: Padded and Flexible Parts for Aircraft Interior Applications

Extending from the flight deck in the fore to lavatories in the aft, General Plastics’ flexible polyurethane foam parts play integral yet unsung roles in today’s aircraft.

No Bones About It: Polyurethane Foam is a Better Medium for Orthopedic Models

Traditional Media and Their Drawbacks Common materials for orthopedic testing and education – most often, cadaver specimens, but also animal bones and wood – while utilitarian, are far from ideal for today's researchers and students.

General Plastics Announces the Promotion of Mitchell Johnson, Ph.D. to Company President as it Celebrates the Company’s 75th Year

Leading manufacturer known for research and development, quality systems and solving customers’ most vexing challenges is poised to advance new materials and expand in new markets TACOMA, Wash. – November 28, 2016 – General Plastics Manufacturing Company, a leading global supplier of rigid and flexible polyurethane foam materials and build-to-print parts, marks its 75th anniversary on December 1, 2016 with the announcement of the promotion of Mitchell Johnson, Ph.D. to company president.


Manufacturer of rocket boosters for NASA's Space Launch System proves protective qualities of GP foam in nozzle closures THE APPLICATION:  Orbital ATK (NYSE: OA) is a global leader in aerospace and defense technologies.

General Plastics’ Rick J. Brown, Ph.D. to Present Paper on Crash and Fire Protection for Nuclear Transportation Containers September 20 at PATRAM 2016

Polyurethane foam innovator will also spotlight its flame-retardant foam series for nuclear material applications and transportation TACOMA, Wash. – September 12, 2016 – Nuclear Packaging Manager Rick J.

General Plastics' High-temperature Tooling Board Series

LAST-A-FOAM® FR-4700 HT Tooling Board Series is a rigid, high-temperature, hybrid tooling board that is designed for prototype machining, prepreg composite lay-up tooling, vacuum form tooling, tool proofing, pattern making and master model making.

LAST-A-FOAM FR-6700 Aerospace Grade Series

LAST-A-FOAM FR-6700 is a flame-retardant rigid foam for aircraft composite core withstands process temperatures up to 250°F.

General Plastics' Flame-Retardant Polyurethane Foam Plays Pivotal Role in Successful Ground Test of World's Largest Solid Rocket Motor for NASA Space

LAST-A-FOAM FR-4306 polyurethane foam tapped for nozzle closures in Orbital ATK's five-segment rocket boosters for NASA missions to explore deep space.

Tooling Foam Empowered Creation & Test of Prototype Missile Aeroshell Cover at Mach 4+ Speed

DEFENSE SUBCONTRACTOR SLASHES THREE-FOURTHS OF ITS PROTOTYPING COSTS & TIME USING GP's MULTI-USE CORE FOAM The Application: Applied Aerospace Structures Corp. (AASC) specializes in the design, fabrication and testing of lightweight structural assemblies, focusing on high-performance engineered structures for space, aircraft and ground systems.

High-Temp Tooling Foam and Machining Services Help Aerospace Innovator Compress its Research and Development Cycle

General Plastics’ High-Temperature Tooling Foam and Machining Services Help Aerospace Innovator compress its Research and Development Cycle Faster True-to-Life Prototyping Speeds New Products to Market Thanks to Expertly Machined High-Temp Tooling Board The Application: Based in Everett, Wash., BLR Aerospace specializes in aerodynamic performance enhancements for helicopters and turbine-powered aircraft.

As Seen In CompositesWorld

Composite sandwich panels enable flexibility in medical table design
Polyurethane foam core provides a cost-effective option for ACP Composites’ specialized medical positioning table design.

CAMX 2020 exhibit preview: General Plastics
General Plastics Manufacturing Co. is showcasing its LAST-A-FOAM core products, custom molding capabilities and high-temperature, low-CTE tooling board.   

Composites suppliers, fabricators respond to coronavirus
Companies across the composites industry supply chain share how the COVID-19 pandemic is affecting their businesses, and how they are available to help.

CAMX 2019 exhibit preview: General Plastics
General Plastics Manufacturing Co. is showcasing its new LAST-A-FOAM FR-4800 tooling board at its CAMX 2019 booth.

General Plastics' LAST-A-FOAM FR-4800 tooling board.

CAMX 2018 preview: General Plastics
General Plastics (Tacoma, WA, US) is featuring its new high-temperature, low-CTE LAST-A-FOAM FR-4800 tooling board.

General Plastics' LAST-A-FOAM 4800 tooling board.

General Plastics launches ultrahigh-temperature tooling board
General Plastics Mfg. Co. (Tacoma, WA, US) expanded its line of high-temperature tooling board materials with the introduction of LAST-A-FOAM FR-4800, an autoclave-capable, high-density epoxy-urethane foam designed for master plug manufacturing, tool proofing, vacuum form tooling, pattern making, and short-run production tooling applications.


CAMX 2017 preview: General Plastics
General Plastics Mfg. Co. (Tacoma, WA, US) is showcasing its new LAST-A-FOAM RF-2200, a lightweight material that provides an RF-transparent protective layer for radome and antenna applications.

JEC World 2017 at the Paris Nord Villepinte Exhibition Center

JEC World 2017 exhibit preview
JEC World will be held March 14-16 in Paris. CW previews some of the products and technologies that will be at the show.

JEC World 2016, the full report
CompositesWorld's editors report on the technologies and products that caught our eye at JEC World 2016, in early March.

composite tooling

Composites 101: Tooling
Composite parts are formed in molds, also known as tools. Tools can be made from virtually any material. The material type, shape and complexity depend upon the part and length of production run. Here's a short summary of the issues involved in electing and making tools.

CFRP camera boom enables safe spill inspection
NONA Composites’ 32m REACH structure meets tight remediation schedule at DoE radioactive waste storage site.

Composite tooling without oven or autoclave
No Oven No Autoclave technology has been demonstrated in tooling for NASA, including multiple thermal cycles and use for curing epoxy infused out-of-autoclave parts.

Pierce County trains skilled workers through collaborative curriculum building
Bruce Kendall, the president and CEO of the private, nonprofit Economic Development Board (EDB) for Tacoma-Pierce County (Wash.), reports on the success of a collaborative training curriculum development program that produces skilled workersfor the aerospace industry.

Tooling boards improve processes
In the composites industry, many parts are the product of one-off or few-of-a-kind production programs. In response, tooling material suppliers today provide an increasing variety of relatively inexpensive materials grouped under the heading of tooling board.

Isotruss bicycle

SAMPE 2009 Product Showcase
Showgoers at the SAMPE 2009 Conference and Exhibiton in Baltimore, Md. found many suppliers undeterred by poor economic news. 

Tooling Board

Taking Up Tooling Boards
Tooling Board ManufacturersEpoxy and polyurethane tooling boards are a standby for creating models or low-run-production tooling.

SAMPE exhibitors in Long Beach

SAMPE 2005 Product Showcase
SAMPE's U.S. Symposium and Exhibition highlights technological innovation and market expansion.

Blast protection

Blast protection for large structures
Hardening of public buildings against terrorist threats represents a potentially huge market for antiballistic composites.

Balsa wood, sorted by density, is sawn in preparation for gluing into core sheets.

Getting To The Core Of Composite Laminates
A wealth of low-cost core solutions are available for high-performance sandwich structures.

Product Categories of General Plastics Mfg. Co.

Adhesive bonding
Aerospace, aircraft interior
Aerospace, flight control surfaces
Aerospace, radomes
Automotive, body panels & substructures
Automotive, interior (seats, IPCs, floor panels, etc.)
Backup structures
Composite, carbon fiber/epoxy
Composite, fiberglass
Composite, other
Composite, prepreg
Cutting, finishing, and machining
Flame/smoke toxicity testing
Foam core, polyurethane
Honeycomb, foam-filled
Infrastructure, composite
Mandrels, other
Mandrels, segmented
Master pattern material, other
Master pattern material, polymeric
Materials analysis
Moldmaking and patternmaking
Other fabricating services
Other tools/tooling materials
Resin transfer molding (RTM)
Resin transfer molding (RTM)
RTM/resin infusion
Tooling board
Tooling prepreg
Vacuum-assisted resin transfer molding (VARTM)
Vacuum-assisted resin transfer molding (VARTM)