Airtech
Published

VolturnUS floating wind turbine celebrates one year of service

The VolturnUS 1:8 scale floating wind turbine off the coast of Maine has successfully withstood 18 severe storms in its one year of service.

Share

U.S. Sen. Susan Collins and U.S. Rep. Michael Michaud welcomed top officials from the U.S. Department of Energy (DOE) to Castine, Maine, USA, on Sept. 5 to celebrate a successful year of the VolturnUS floating wind turbine deployed off Castine.

The federal officials were joined by representatives from the University of Maine, Maine Maritime Academy and Cianbro, who discussed highlights of the year-long deployment off the coast of Castine. VolturnUS, a 1/8th scale model of a 6-MW floating wind turbine with more than 50 sensors on board, has been successfully operating and collecting data related to design capabilities for more than a year, including throughout the Maine winter. Among the data highlights:

  • The VolturnUS 1:8 successfully withstood 18 severe storms equivalent to 50-year storms, and one 500-year storm.
  • The maximum acceleration measured was less than 0.17 g for all 50- and 500-year storms, which matched numerical predictions.
  • The maximum tower inclination angle measured was less than 7° in all 50- and 500-year storms, and these numbers matched predictions.

“This anniversary is another great day for our state, the University and its many partners, and for the advancement of clean, renewable energy for our nation,” said Collins. “This is a remarkable achievement and confirms my belief that the most innovative and dedicated wind energy researchers in the world are working right here in Maine.”

Michaud said the VolturnUS wind turbine is an incredible project and a great example of the type of forward-thinking ideas that can strengthen our economy in the years to come and define Maine as a leader in innovative technologies. “The UMaine team has done incredible work to get not just VolturnUS up and running, but many other promising initiatives as well. I look forward to continuing to partner with them on advancing these projects that will strengthen Maine's economy,” he said.

In addition, as part of the event, DOE Assistant Secretary for Energy Efficiency and Renewable Energy, David Danielson, signed a $3.8 million cooperative research agreement with UMaine to continue the design and engineering work of the full-scale VolturnUS floating hull.

“The VolturnUS floating turbine is a patent-pending technology developed at the University of Maine Advanced Structures and Composites Laboratory by UMaine and Cianbro personnel. In June 2013, it became the first grid-connected offshore wind turbine deployed in the Americas, and the first floating turbine in the world designed using a concrete hull and a composites material tower to reduce costs and create local jobs. The turbine is a 1:8 geometric scale test program to prepare for the construction of a larger 6-MW floating turbine. The project brought together more than 30 organizations as part of the DeepCwind Consortium, led by UMaine and funded through a competitive DOE grant and industry contributions.

“The success of the VolturnUS 1:8 test project deployed off Castine is a critical milestone on our path to allow us to economically harness the enormous wind power far offshore the U.S.," said Habib Dagher, director of UMaine's Advanced Structures and Composites Center. “The VolturnUS concrete floating hull technology has the potential to harness over 50 percent of the U.S. 4,000-GW offshore wind resource. With 156 GW of offshore wind capacity off the Maine coast, and 4,000 GW off the U.S. coast, we have an opportunity to reduce our reliance on fossil fuels, stabilize energy prices over the long run, help protect the environment, stimulate local economic activity and create a new industry.” 

Coast-Line Intl
Chem Trend
Airtech
HEATCON Composite Systems
CAMX 2024
CompositesWorld
Thermwood Corp.
Airtech
NewStar Adhesives - Nautical Adhesives
CompositesWorld
KraussMaffei Metering Systems
3D industrial laser projection

Related Content

Novel composite technology replaces welded joints in tubular structures

The Tree Composites TC-joint replaces traditional welding in jacket foundations for offshore wind turbine generator applications, advancing the world’s quest for fast, sustainable energy deployment.  

Read More

JEC World 2022, Part 3: Emphasizing emerging markets, thermoplastics and carbon fiber

CW editor-in-chief Jeff Sloan identifies companies exhibiting at JEC World 2022 that are advancing both materials and technologies for the growing AAM, hydrogen, automotive and sustainability markets.

Read More
Pressure Vessels

Materials & Processes: Resin matrices for composites

The matrix binds the fiber reinforcement, gives the composite component its shape and determines its surface quality. A composite matrix may be a polymer, ceramic, metal or carbon. Here’s a guide to selection.

Read More
Wind/Energy

Plant tour: ÉireComposites, Galway, Ireland

An in-house testing business and R&D focus has led to innovative materials use and projects in a range of markets, from civil aerospace to renewable energy to marine.

Read More

Read Next

Wind/Energy

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Chem Trend