Kraussmaffei Metering Systems
Published

University of Utah receives $4 million dollar grant to advance state’s composites industry

Through this DOD-OEA grant, an extensive analysis will be undertaken to map Utah’s entire carbon composites supply chain.

Share

The University of Utah (Salt Lake City) has received a $4 million dollar grant from the Department of Defense (DoD), Office of Economic Adjustment, to assess and improve the complete supply chain for Utah’s DoD focused composites and advanced materials industry. The overall objective of the grant is to make Utah’s advanced materials industry more globally competitive and capable of diversifying into new markets in which industry contracts can be secured and state jobs increased.

“Utah has moved well beyond the early applications of carbon composites to now using these advanced materials in aerospace/defense, outdoor products, transportation equipment and medical products. Advanced composites are key to sustaining the military’s air fleet, improving medical products, creating innovative recreational products and contributing to widespread innovation across a range of industries and markets,” says Greg Jones, Associate Director of the Scientific Computing and Imaging (SCI) Institute at the University of Utah and the grant director.

“Advanced materials range from composites such as carbon and glass fibers, to ceramics and polymers that are made using advanced manufacturing techniques, including filament winding, automated fiber placement and automated tape laying,” Jones added.

For this regional industry to expand and stay competitive, improvements are needed in how Utah’s advanced materials supply chain and ecosystem actually work, which is the purpose of the grant.

“The supply chain consists of all those companies, large and small, that contribute in some way to the final advanced materials produced,” says Kevin Jessing, SCI Institute Project Manager.

“The key components of an integrated supply chain include the manufacturers, raw material suppliers, service-based companies and, of course, the trained workforce. And when they all come together, they produce the real magic that is found in today’s advanced materials industry,” Jessing says.

Through this DOD-OEA grant, an extensive analysis will be undertaken to map Utah’s entire carbon composites supply chain. OEA is the Department of Defense’s field organization responsible for supporting state and local government response to defense program changes, such as base closures, base restructuring or realignment, growth issues surrounding compatible land and air use for the military base and community, and other issues that can impact the economy of a region.

The supply chain mapping will extend to the personal relationship level among professionals who work at various positions within the industry.

“This is a unique effort to map the entire supply chain, which will yield worthwhile results not only for Utah but the entire industry,” says Jones.

“Along with identifying all the companies engaged in the supply chain, we will also be able to track how they partner with each other. We want carbon fiber lay-up specialists in a company to be able to connect with their peers doing similar work somewhere else and share best practices,” he concluded.

The mapping tool will enable manufacturers to find local Utah companies with the expertise and equipment to supply their most demanding materials and manufacturing requirements. The expected results are enhanced sharing of knowledge, the expanded capacity of Utah companies, greater integration among businesses and increased competency, all of which will help Utah companies gain a stronger foothold in the global advanced materials market and prepare the industry for future growth and further diversification, thereby resulting in a stronger and more resilient supply chain.

cut by an Eastman
A manufacturing puzzle
KraussMaffei Metering Systems
CompositesWorld
Carbon Fiber 2024
Thermwood Corp.
CAMX 2024
Airtech
industrial CNC routers
Keyland Polymer
Sysenqo high performance materials
NewStar Adhesives - Nautical Adhesives

Related Content

Focus on Design

Protecting EV motors more efficiently

Motors for electric vehicles are expected to benefit from Trelleborg’s thermoplastic composite rotor sleeve design, which advances materials and processes to produce a lightweight, energy-efficient component.

Read More
Aerospace

Optimizing AFP for complex-cored CFRP fuselage

Automated process cuts emissions, waste and cost for lightweight RACER helicopter side shells.

Read More
Carbon Fibers

Joby Aviation advances toward FAA certification, highlights Toray prepreg and Coriolis AFP machines

Joby Aviation aims for FAA Part 135 certificate by end of 2022 and launch of commercial service by 2024 as it completes first production-intent aircraft from its pilot manufacturing facility; composites play a key role.

Read More
Consumer

Materials & Processes: Fabrication methods

There are numerous methods for fabricating composite components. Selection of a method for a particular part, therefore, will depend on the materials, the part design and end-use or application. Here's a guide to selection.

Read More

Read Next

Pressure Vessels

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Airtech International Inc.