• PT Youtube
  • CW Facebook
  • CW Linkedin
  • CW Twitter
6/3/2016 | 1 MINUTE READ

PPG, Lawrence Livermore National Laboratory to collaborate on fiber glass project

Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

The computing project aims to reduce product and energy loss during fiber glass manufacture.


Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

Related Suppliers

PPG, Pittsburgh, and Lawrence Livermore National Laboratory (LLNL, Livermore, Calif.) will partner to help reduce glass fiber breakage during the fiber glass manufacturing process to improve yield, reduce waste and become more energy-efficient. The PPG/LLNL collaboration was recently awarded through the U.S. Department of Energy’s new High Performance Computing for Manufacturing (HPC4Mfg) program.

Fiber glass is made using a continuous high-speed process. If even one of several thousand glass fibers breaks while being pulled through a die (or bushing), it causes the entire bundle of fibers to break, wasting a significant amount of glass and energy until the manufacturing process can be restarted. To help eliminate this waste, PPG and LLNL will develop numeric computer models to simulate the impact of thermal and physical environments on the glass-fiber forming process over a 4,000-tip bushing. The complexity and magnitude of the simulations requires the vast supercomputing resources at LLNL to model the process.

John Meng, PPG senior research associate, fiber glass, and principal investigator for the project, said the program will develop models that, for the first time, are representative of real-world fiber glass manufacturing.

“The fiber glass industry has simulated the impact of varying one process parameter over many fibers and changing several process parameters over one fiber, but no one has modeled multiple process parameters over the thousands of fibers needed to adequately simulate actual production,” he said. “The supercomputing capabilities at LLNL and PPG’s manufacturing expertise will enable us to develop sophisticated models that encompass all of these parameters. Ultimately, that will help us gain insight into fiber-forming and fiber-to-fiber interaction so that we can reduce fiber breaks through improved bushing design and fiber-forming processes.”

PPG will provide $99,000 in technical support to the project. The DOE will contribute $300,000 to LLNL to fund its effort on the project.


  • Composites 101: Fibers and resins

    Compared to legacy materials like steel, aluminum, iron and titanium, composites are still coming of age, and only just now are being better understood by design and manufacturing engineers. However, composites’ physical properties — combined with unbeatable light weight — make them undeniably attractive. This month, CAMX Connection introduces to composites novices the fibers and resin systems commonly used in composites manufacturing.

  • The fiber

    The structural properties of composite materials are derived primarily from the fiber reinforcement. Fiber types, their manufacture, their uses and the end-market applications in which they find most use are described.

  • Composite flywheels: Finally picking up speed?

    A wave of new composite flywheel developments for bus, rail, auto, heavy truck, construction equipment, and power grid support promises fuel savings, improved efficiency and reduced emissions — i.e. sustainability in the global quest for more energy.