Precision Board High-Density Urethane
Published

NASA selects American companies for lunar landers, propulsion element

NASA has announced the companies that will conduct research and build prototypes, and build the PPE spacecraft for its Artemis missions.

Share

NASA has announced 11 companies it will work with to conduct studies and produce prototypes of human landers for its Artemis lunar exploration program, as well as the company building the lunar Gateway’s power and propulsion element (PPE). This effort reportedly will help put American astronauts on the Moon’s south pole by 2024 and establish sustainable missions by 2028.

Through Next Space Technologies for Exploration Partnerships (NextSTEP) Appendix E contracts, the selected companies will study and/or develop prototypes during the next six months that reduce schedule risk for the descent, transfer and refueling elements of a potential human landing system.

NASA’s proposed plan is to transport astronauts in a human landing system that includes a transfer element for the journey from the lunar Gateway to low-lunar orbit, a descent element to carry them to the surface, and an ascent element to return to them to the Gateway. The agency also is looking at refueling capabilities to make these systems reusable.

The total award amount for all companies is $45.5 million. As NextSTEP is a public/private partnership program, companies are required to contribute at least 20% of the total project cost. This partnership will reduce costs to taxpayers and encourage early private investments in the lunar economy.

The companies currently announced are:

  • Aerojet Rocketdyne (Canoga Park, Calif.)One transfer vehicle study;
  • Blue Origin (Kent, Wash.): One descent element study, one transfer vehicle study, and one transfer vehicle prototype;
  • Boeing (Houston, Texas): One descent element study, two descent element prototypes, one transfer vehicle study, one transfer vehicle prototype, one refueling element study, and one refueling element prototype;
  • Dynetics (Huntsville, Ala.): One descent element study and five descent element prototypes;
  • Lockheed Martin (Littleton, Colo.): One descent element study, four descent element prototypes, one transfer vehicle study, and one refueling element study;
  • Masten Space Systems (Mojave, Calif.): One descent element prototype;
  • Northrop Grumman Innovation Systems (Dulles, Va.): One descent element study, four descent element prototypes, one refueling element study, and one refueling element prototype;
  • OrbitBeyond (Edison, N.J.): Two refueling element prototypes;
  • Sierra Nevada Corporation (Louisville, Colo. and Madison, Wis.): One descent element study, one descent element prototype, one transfer vehicle study, one transfer vehicle prototype, and one refueling element study;
  • SpaceX (Hawthorne, Calif.): One descent element study; and
  • SSL (Palo Alto, Calif.): One refueling element study and one refueling element prototype.

Separately, NASA also announced on May 23 that Maxar Technologies (Westminster, Colo.) will be the contractor for the PPE for the lunar Gateway, one of the earliest phases of the project.

 

The power and propulsion element reportedly is a high-power, 50-kilowatt solar electric propulsion spacecraft, said to be three times more powerful than current capabilities. As a mobile command and service module, the Gateway will provide communications during lunar expeditions.

 

“To accelerate our return to the Moon, we are challenging our traditional ways of doing business. We will streamline everything from procurement to partnerships to hardware development and even operations,” says Marshall Smith, director for human lunar exploration programs at NASA Headquarters. “Our team is excited to get back to the Moon quickly as possible, and our public/private partnerships to study human landing systems are an important step in that process.”

 

Park Aerospace Corp.
Composites One
De-Comp Composite Materials and Supplies
Janicki employees laying up a carbon fiber part
Precision Board High-Density Urethane
UV Cured Powder Coating from Keyland Polymer
NewStar Adhesives - Nautical Adhesives
KraussMaffei Metering Systems
3D industrial laser projection
CompositesWorld
Carbon Fiber 2024
CAMX 2024

Related Content

Thermoplastics

Plant tour: Joby Aviation, Marina, Calif., U.S.

As the advanced air mobility market begins to take shape, market leader Joby Aviation works to industrialize composites manufacturing for its first-generation, composites-intensive, all-electric air taxi.

Read More
Marine

Carbon fiber in pressure vessels for hydrogen

The emerging H2 economy drives tank development for aircraft, ships and gas transport.

Read More
Plant Tours

Plant tour: Spirit AeroSystems, Belfast, Northern Ireland, U.K.

Purpose-built facility employs resin transfer infusion (RTI) and assembly technology to manufacture today’s composite A220 wings, and prepares for future new programs and production ramp-ups.

Read More

A new era for ceramic matrix composites

CMC is expanding, with new fiber production in Europe, faster processes and higher temperature materials enabling applications for industry, hypersonics and New Space.

Read More

Read Next

Thermoplastics

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Pressure Vessels

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Precision Board High-Density Urethane