Airtech
Published

Looking for Lindberghs

Every paradigm-shifting invention throughout human history has been met with skepticism. CW editor-in-chief Jeff Sloan says the composites industry has need of those willing to attempt what most believe impossible.

Share

I am reading a book called The Aviators, by Winston Groom. Engagingly written, well researched and insightful, it tells the story of the three aviators who, Groom argues, are most responsible for the survival and development of the US aviation industry, especially in its nascent period in the early 20th Century: Eddie Rickenbacker, Jimmy Doolittle and Charles Lindbergh.

One of the things I find so intriguing about the study of such a history is the opportunity to understand people and events in the context of their time. Too often, when we study historical events, we are (whether we know it or not) biased by the outcome. We know, for instance, who won the war, but we don’t appreciate that those fighting in the war didn’t have that certainty of outcome; in fact, they labored under great uncertainty, fear and distress. (This is why historians so highly value diaries and journals — they are untainted by hindsight.)

Today, when we look at the aerospace industry, we see the result of 100-plus years of innovation, daring and technological advancement that have led, apparently, to this point: Global, trans-ocean, high-speed passenger travel; supersonic, super-weaponized fighters; stealthy, nimble unmanned aircraft; manned and unmanned spacecraft.

There was, however, a time when such an outcome was inconceivable and, thus, unlikely. Groom makes clear in The Aviators that governments and private industry struggled, early on, to understand if and how the airplane could be useful as a vehicle for commercial or military use. The United States military, in particular, was reluctant to incorporate aircraft into its arsenal, even after the success fighter pilots enjoyed in World War I. 

This uncertainty is one reason why Lindbergh’s nonstop, transatlantic flight from New York to Paris in 1927 was so monumental. When Lindbergh landed in Paris, he almost single-handedly ushered in a new mode of human travel. Indeed, today it’s extremely difficult for us to imagine what our lives would be like without the speed and convenience of air travel. It seems like it was inevitable. But before Lindbergh took off, very few people thought it could be done. No less than Wilbur Wright, one of the inventors of the first airplane, in fact, believed that such a flight in an airplane was impossible. Lindbergh succeeded because he was willing to apply technology and ideas that others hadn’t: He flew a more aerodynamic mono-wing plane; he flew alone (no navigator); he eschewed extra weight (he even trimmed the edges off of his navigation maps!); he flew what was, effectively, a fuel tank with wings.

Of course, the aerospace industry is not unique. Every paradigm-shifting invention throughout human history has been met with skepticism. Even the wheel itself, one can imagine, must have induced much head-scratching before its potential was realized.

Composites are no different, and it would be helpful if we could zip 50 years into the future to get a glimpse of where carbon fiber and glass fiber structures are headed. Instead, we’re here, in the moment. In context. And what is that context? Over the past 40 years, composites have seen tremendous growth and evolution, but in some quarters, they’re still that poorly understood “niche” material — the square peg manufacturers want to squeeze into the round hole now occupied by metals and concrete and other established materials.

The times require Rickenbackers, Doolittles, Lindberghs — people willing to evangelize, innovate, take risks and apply composites in “impossible” ways. The good news is that the composites industry already has such leaders. We just need to let them fly.

Airtech
Smart Tooling
industrial CNC routers
Airtech
Thermwood Corp.
CompositesWorld
NewStar Adhesives - Nautical Adhesives
HEATCON Composite Systems
Carbon Fiber 2024
CAMX 2024
Harper International Carbon Fiber
pro-set epoxy laminate infusion tool high temp Tg

Related Content

Aerospace

One-piece, one-shot, 17-meter wing spar for high-rate aircraft manufacture

GKN Aerospace has spent the last five years developing materials strategies and resin transfer molding (RTM) for an aircraft trailing edge wing spar for the Airbus Wing of Tomorrow program.

Read More
Thermoplastics

Materials & Processes: Composites fibers and resins

Compared to legacy materials like steel, aluminum, iron and titanium, composites are still coming of age, and only just now are being better understood by design and manufacturing engineers. However, composites’ physical properties — combined with unbeatable light weight — make them undeniably attractive. 

Read More
Sustainability

The state of recycled carbon fiber

As the need for carbon fiber rises, can recycling fill the gap?

Read More
Weaving

The making of carbon fiber

A look at the process by which precursor becomes carbon fiber through a careful (and mostly proprietary) manipulation of temperature and tension.

Read More

Read Next

Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Thermoplastics

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Wind/Energy

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Airtech International Inc.