• PT Youtube
  • CW Facebook
  • CW Linkedin
  • CW Twitter
6/17/2019 | 1 MINUTE READ

CGTech joins NIAR to support ATLAS research

Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

CGTech's AFP/ATL programming and simulation software will be used to support ATLAS aerospace composites research at the National Institute of Aviation Research.


Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

CGTech (Irvine, Calif., U.S.), the developer of VERICUT CNC simulation, verification and optimization software, joins Wichita State University’s National Institute of Aviation Research (NIAR; Wichita, Kan., U.S.) to participate in the Automated Technologies Laboratory for Advanced Structures (ATLAS). ATLAS investigates the development of manufacturing protocols for automated fiber placement (AFP) and automated tape laying (ATL) for aircraft systems.

The partnership between CGTech and NIAR is intended to combine VERICUT’s programming and simulation capabilities for AFP and ATL with ATLAS’s advanced robotics capabilities, including a thermoplastics-capable Coriolis (Queven, France) robot and an Electroimpact (Mukilteo, Wash., U.S.) AFP robot.

“Working with NIAR will help leverage our expertise in AFP and ATL manufacturing,” says Andre Colvin, CGTech’s composites product manager. “Together with the ATLAS program, we will advance the capabilities of advanced automated composites manufacturing.” 

ATLAS provides a facility for manufacturers to research advanced manufacturing concepts using various machines, software and processing options. The university recently received a $2 million grant contract from the U.S. Economic Development Association to develop and demonstrate advanced composite material manufacturing technology. Since 1988, CGTech’s VERICUT software has been the industry standard for simulating CNC machining.

"Partnership with CGTech enables us to develop a multi-disciplinary manufacturing environment and an engineering education program to prepare engineers and educators for the Factory of the Future and to aid the current workforce in seamlessly adapting to advancements in the workplace.,” says Dr. Waruna Seneviratne, director of ATLAS.


  • Fabrication methods

    There are numerous methods for fabricating composite components. Selection of a method for a particular part, therefore, will depend on the materials, the part design and end-use or application. Here's a guide to selection.

  • Lightning strike protection strategies for composite aircraft

    Tried-and-true materials thrive, but new approaches and new forms designed to process faster are entering the marketplace.

  • Tooling

    Composite parts are formed in molds, also known as tools. Tools can be made from virtually any material. The material type, shape and complexity depend upon the part and length of production run. Here's a short summary of the issues involved in electing and making tools.