AMAC, Pontis Engineering cooperate on e-mobility

The collaboration will focus on application of composites in battery housings and electric vehicles of all types.
#electricvehicles #sustainability


Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon
Photo Credit: AMAC

Industrial and business consultancy AMAC (Aachen, Germany) reported on March 1 that it is collaborating with engineering firm Pontis Engineering (Rouveen, the Netherlands). The collaboration focuses on the development of medium-volume niche applications in e-mobility based on advanced composites. The applications range from lightweight structural battery housings to complete electric vehicles for road, industry, water and air transportation.      

Pontis Engineering is an international engineering company that specializes in engineering solutions for advanced composites niche applications in aerospace, wind energy and mobility. Pontis’ developments include the world's largest rotor blades (100+ meters), a new Olympic track bike and solar panels for weather satellites. 

AMAC and Pontis plan to support the fast-growing e-mobility market with high-end, lightweight, energy-saving composite solutions in order to make a valuable contribution to global mobility and sustainability challenges.

Sjef van Breugel, managing director of Pontis Engineering, says, “We are ready to bring our 25-plus- year track record of cutting-edge technology to the dynamic, innovative and sustainable e-mobility sector at full speed. We have strong assets to enable and support the rapid growth of this sector with the best lightweight solutions. With our extensive experience in disruptive engineering for renewable energies, our people, competences and development capacities, we are well positioned to advance the future of mobility.” 

Dr. Michael Effing, managing director of AMAC, says, “The core competence of Pontis is to develop lightweight electrical passenger cars reducing the fuel consumption and bringing down CO2 emissions, from feasibility studies over industrial transportation to last-mile delivery. Pontis differentiates, because they offer tailored cost-efficient solutions, based on a design-for-manufacturing approach. The global market for electrical vehicles is about 4 million units in 2020 and is expected to grow to more than 25 million EVs by 2030. The increasing adoption of electric buses is likely to propel the growth of commercial vehicles in this period even more. This is a huge opportunity for lightweight composites.”


  • Composite flywheels: Finally picking up speed?

    A wave of new composite flywheel developments for bus, rail, auto, heavy truck, construction equipment, and power grid support promises fuel savings, improved efficiency and reduced emissions — i.e. sustainability in the global quest for more energy.

  • The reality of carbon fiber for the auto industry today

    Greg Rucks, a manager in the transportation practice at composites think tank Rocky Mountain Institute (RMI, Snowmass, Colo.), sees realistic pathways for carbon fiber incursion in to the automotive passenger car market.

  • The spread of spread tow

    Advancing from “lighter and thinner” to boosting strength, stiffness, impact resistance and productivity, spread tow unlocks new applications and markets.