Precision Board Urethane Tooling Board
Published

Sitting on the cusp of a paradigm shift

My wife and I had to fly to New Jersey recently. As we boarded the plane and took our seats, I pointed out the window at the wing of the jet we were on and said something about how, soon, the wing and much of the fuselage of planes like this would be made from carbon fiber composites.

Share

My wife and I had to fly to New Jersey recently. As we boarded the plane and took our seats, I pointed out the window at the wing of the jet we were on and said something about how, soon, the wing and much of the fuselage of planes like this would be made from carbon fiber composites. My wife nodded sagely, gazed out the window and said, “Is it safe?”

Of course, I quickly launched into a 10-minute tutorial on the history of metals and composites use on aircraft, about how aluminum has dominated aircraft manufacturing for so long and how carefully companies such as Boeing and Airbus have switched to composites. I explained that aircraft manufacturers place a premium on material integrity and testing and that the survival of Boeing and Airbus depends entirely on their ability to help their customers safely move people and freight from point A to point B — that the emphasis on composites is not a trivial one.

The problem with this discourse is that it almost completely understates the quantity and quality of change composites have wrought in the commercial aircraft industry. My college biology professor would call it a paradigm shift. Indeed, that so much of the newest planes (787, A350) will be comprised of composites is a testament to years of slow, gradual, careful, thoughtful and always painstaking evolution from an “old-line” tried-and- trusted material (aluminum) to a next-generation material (composites). Looking back, it all seems nearly impossible.

How hard was it to imagine even a decade ago that Boeing and Airbus would make the titanic strategic shift required to move away from aluminum and integrate composites so thoroughly into new construction? How hard was it to imagine that, one day, composites would comprise more than 50 percent of a plane’s weight, as is the case with the 787 and the A350? Then again, perhaps it was inevitable. As composite materials and manufacturing methods advanced, so did jet fuel prices and the cost of traditional raw materials; economics certainly have played a big part in the migration toward composites.

If there is any lingering doubt, however, about the future of carbon fiber in aerospace, it was surely put to rest in early February when Toray Industries Inc. announced a $451.7 million, two-year expansion of its global PAN-based carbon fiber production to meet increased demand from aircraft manufacturers. This was followed by a similar announcement from Cytec Industries Inc. that it would invest $150 million through 2010 to expand its aerospace-grade carbon fiber production. In many ways, this is the strongest signal from the market that the current wave of expansion is not just another temporary upswing in the historically up/down carbon market. It’s not without some hesitation that carbon fiber suppliers make the investment and effort to expand capacity. Carbon fiber supplies have been notoriously tight for some time, but it wasn’t until Airbus and Boeing made their commitment to composites-heavy manufacturing that these supplier expansions were solidified. Thus, the suppliers at the very bottom of the carbon fiber food chain have clearly signaled that they not only see carbon fiber’s expansion as viable, but they are willing to put money on it.

Compression Molding
Park Aerospace Corp.
Wickert Hydraulic Presses
Precision Board Urethane Tooling Board
Composites One
ViRTEK IRIS 3D
Janicki employees laying up a carbon fiber part
Chem Trend
Thermwood Corp.
A manufacturing puzzle
Sysenqo high performance materials
CW Tech Days Sustainability - Register Today!

Related Content

Glass Fibers

I have seen the future and it is coming

The last 20 years were good to composites. What does the next 20 years have in store?

Read More
Aerospace

Ready or not, here come flying taxis and hydrogen

Composites are ripe for entry into a variety of markets, but advanced air mobility and hydrogen storage are poised to put unprecedented pressure on the supply chain.

Read More
Aerospace

The evolution of the commercial aerospace landscape

Following the grounding of the 737 and the downturn caused by the pandemic, Boeing finds itself a distant second to Airbus. What should it do?

Read More
Editorial

Composites in aircraft fuselage — now and in the future

What do some of the challenges of composites use on the 787 teach us about composites use on next-generation aircraft?

Read More

Read Next

Wind/Energy

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Composites One