Advanced Materials

A new step forward in composites mass production
Table of contents

<table>
<thead>
<tr>
<th>Composites manufacturing</th>
<th>The next step change in composites technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast cure epoxy solutions</td>
<td>Araldite® solutions for preforming and injection</td>
</tr>
<tr>
<td>System versatility</td>
<td>The ideal reactivity for each part</td>
</tr>
<tr>
<td>NEW Process</td>
<td></td>
</tr>
<tr>
<td>Dynamic Fluid Compression Molding (DFCM)</td>
<td>Simple and fast</td>
</tr>
<tr>
<td></td>
<td>Autoclave quality in 1’30 min</td>
</tr>
<tr>
<td></td>
<td>HP-RTM vs DFCM</td>
</tr>
<tr>
<td>Composites process simulation</td>
<td>Material models</td>
</tr>
<tr>
<td></td>
<td>Cure simulation</td>
</tr>
<tr>
<td></td>
<td>Flow simulation</td>
</tr>
<tr>
<td>Building on experience</td>
<td>Araldite® case stories</td>
</tr>
</tbody>
</table>

Advanced Materials
Huntsman Advanced Materials brings the next step change in composites technology, allowing part production time in 1'30 min or less.

With the release of a new global offer for the automotive industry, Huntsman meets demands for faster processing and reduced composite production cycles.
Fast cure epoxy solutions

Building on BMW “i” experience

The new epoxy solutions are built on the first generation Araldite® LY 3585 / Hardener XB 3458 and Araldite® LT 3366, qualified for the first mass produced automotive carbon composites application (BMW «i» program).

Araldite® LT 3366 preforming solution

Epoxy binder qualified for mass production of powdered fabrics and preforms

- High softening point preventing ply-to-ply adhesion during storage
- Fast preforming cycle

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softening point</td>
<td>ca. 150°C</td>
</tr>
<tr>
<td>DSC Tg mid-point</td>
<td>75 – 85°C</td>
</tr>
<tr>
<td>Typical preforming cycle</td>
<td>20 ±10 sec at 180 ±20°C + cold stamping</td>
</tr>
</tbody>
</table>

Typical preforming conditions: cold pressing after infra-red heating
Fast cure epoxy solutions

Araldite® LY 3585 / Aradur® 3475 injection solution

<table>
<thead>
<tr>
<th>Preform / fabric lay-up set</th>
<th>HP-RTM process</th>
<th>Wet Compression Molding (WCM) process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araldite® LY 3585 / Aradur® 3475</td>
<td>Araldite® LY 3585 / Hardener XB 3458</td>
<td>Araldite® LY 3585 / Aradur® 3475</td>
</tr>
<tr>
<td>Mold temperature</td>
<td>20-30"</td>
<td>20-30"</td>
</tr>
<tr>
<td>115°C</td>
<td>100°C</td>
<td>140°C</td>
</tr>
<tr>
<td>Injection</td>
<td>No injection</td>
<td>No injection</td>
</tr>
<tr>
<td>0’20 - 0’60 min (small to large part)</td>
<td>0’20 - 0’45 min (small to medium part)</td>
<td>No injection</td>
</tr>
<tr>
<td>Cure</td>
<td>2’00 min</td>
<td>1’00 min</td>
</tr>
<tr>
<td>5’00 min</td>
<td>140°C</td>
<td>140°C</td>
</tr>
<tr>
<td>Demolding</td>
<td>0’5 min</td>
<td>0’5 min</td>
</tr>
<tr>
<td>0’5 min</td>
<td>0’5 min</td>
<td>0’5 min</td>
</tr>
<tr>
<td>Part production time</td>
<td>2’45 - 3’30 min</td>
<td>5’45 - 6’15 min</td>
</tr>
<tr>
<td>2’30 min</td>
<td>1’30 min</td>
<td>2’30 min</td>
</tr>
</tbody>
</table>

(1) First generation solution qualified for the first CFRP mass production application BMW “I” Program
(2) Includes preform / fabric lay-up set, mold closure and vacuum
Fast cure epoxy solutions

Araldite® LY 3585 / Aradur® 3475 injection solution

Very fast curing epoxy system designed for highly structural applications

- High latency during mold filling
- Very fast cure and demolding stiffness development
- High tensile elongation at break

<table>
<thead>
<tr>
<th>Tensile modulus</th>
<th>Araldite® LY 3585 / Aradur® 3475</th>
<th>Araldite® LY 3585 / Hardener XB 3458 (reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 527-2 on neat resin</td>
<td>2 700 - 2 900 MPa</td>
<td>3 000 - 3 100 MPa</td>
</tr>
</tbody>
</table>

Tensile strength	75 - 80 MPa	75 - 80 MPa
Tensile elongation	8 - 10 %	4 - 6 %
DMA Tg onset (1)	105 - 115°C	93 - 103°C
ILSS (2)	58 MPa	60 MPa

Data generated with 2phr internal release agent

(1) Torsion mode, 2°C/min, only Tg assessment on composites relevant since neat resins exotherm in molds

(2) 50K UD, TVI 50%
The ideal reactivity for each part

Composition adjustments

The resin system reactivity can be adjusted to optimize part production time, tailoring to part size and process:
- HP-RTM: injection time optimization to different part size
- WCM: very fast cure (no injection latency required)
- Prototyping: using low temperature molding (standard RTM)

One solution for all

Slight adjustments to the Araldite® LY 3585 / Aradur® 3475 system enable reactivity to be optimized for part size and process, but do not influence mechanical performance, enabling qualification of only one system to meet all production requirements.
System versatility

HP-RTM: optimization of reactivity to part size
Process optimization, matching injection window and part size

<table>
<thead>
<tr>
<th>Viscosity (mPa.s)</th>
<th>1'30"</th>
<th>5'00"</th>
<th>2'00"</th>
<th>2'15"</th>
<th>2'45"</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proposed cure times

- Araldite® LY 3585 / Aradur® 3475 at 115°C
- Araldite® LY 3585 / Aradur® 3475 versatility at 115°C
- Araldite® LY 3585 / XB 3458 at 100°C

Time s

Advanced Materials
WCM: cure time optimization

Optimization for WCM. The process time is independent of part size as there is no injection step.
Simple and fast, the Dynamic Fluid Compression Molding (DFCM) process bypasses the injection step and brings composite production cycle to less than 1’30 min.

Combining a novel process and fast-cure Araldite® epoxy solutions, highly structural parts with outstanding properties can be produced in less than 1’30 minute.

This process is simple, fast and cost effective, requiring low pressure (typically 30 bar) and often removing the need for a fiber preform. Exceptional benefits versus standard compression molding: outstanding mechanical performance thanks to fiber volume content up to 65% in a low wastage process. Void-free parts are produced consistently straight from the mold.
Simple and fast

Table of content
- Fast cure
- System versatility
- New DFCM process
- Process simulation
- Araldite® experience

[Image of manufacturing process]

Insert ➔ Close ➔ Cure ➔ Demold

Advanced Materials
Autoclave quality in 1'30 min

Void-free parts are produced consistently straight from the mold

HP-RTM (x50)
Low porosity, medium FVC (50%)

Standard WCM (x50)
High porosity, high FVC (60%)

New DFCM (x50)
Low porosity, high FVC (60%)
DFCM process bypasses the injection step
HP-RTM vs DFCM

RTM process
- High design freedom (deep draw or 3D)
- Fiber preform mandatory to avoid fiber misalignment
- Pressure during injection up to 150 bar

NEW exclusive DFCM process
- Fiber volume content up to 65%
- Void-free parts
- Faster process vs. RTM
- Pressure only 30 bar
- Fiber wash eliminated
- Low equipment investment
- Reduced waste
- Fiber preform not mandatory
- Complex parts possible (medium draw or 2.5+D)
- Consistent part quality
HP-RTM vs DFCM

Mass production processes comparison for typical state-of-the-art automotive composite parts

Porosity

<table>
<thead>
<tr>
<th>Part complexity</th>
<th>Part quality (porosity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP-RTM</td>
<td>WCM</td>
</tr>
<tr>
<td>CRTM</td>
<td>DFCM</td>
</tr>
<tr>
<td>High Pressure RTM</td>
<td>Compression RTM</td>
</tr>
<tr>
<td>Wet Compression Molding</td>
<td></td>
</tr>
</tbody>
</table>

Process cost
(capital investment, cycle time, fiber preform)

- High cost impact
- Moderate cost impact

- Dynamic Fluid Compression Molding
- High Pressure RTM
- Compression RTM
- Wet Compression Molding

Advanced Materials
HP-RTM vs DFCM

Mass production processes comparison for typical state-of-the-art automotive composite parts

Fiber volume content

Part complexity

Part quality (FVC)

High Pressure RTM
Moderate cost impact

Dynamic Fluid Compression Molding
High cost impact

Araldite® experience

Fast cure
System versatility
New DFCM process
Process simulation

CRTM
HP-RTM
DFCM
WCM

Process cost (capital investment, cycle time, fiber preform)
Virtual process cycles are carried out to refine process design, ensure optimized mold layout and quickly identify ideal processing parameters.

The shortest possible manufacturing time

Resin selection, flow pattern, injection concepts and cure schedule: in our Composite’s Centre of Excellence in Basel, advanced composites process simulation is used to design a production process tailored to each part.
Predictions through accurate material models

Precise descriptions of the resin are used to generate material models which are projected onto the CAD data. This enables prediction of the material behavior during the injection and curing process at each point on the composite part.
Reduce part development time

Resin cure is essential to overall process performance and cure simulation can substantially reduce part development time. During processing of thick-walled structures, temperature builds up due to the exothermic reaction. Using cure simulation, exotherm peaks can be predicted, simplifying process engineering and enabling selection of the correct resin system and process parameters.

For all composites processes

<table>
<thead>
<tr>
<th>Predict</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Cure cycle time</td>
<td>> Process parameter determination</td>
</tr>
<tr>
<td>> Exotherm temperature</td>
<td>> Resin system selection</td>
</tr>
<tr>
<td>> Evolution of Tg and conversion</td>
<td>> Process safety</td>
</tr>
</tbody>
</table>

Exotherm prediction
Example of a pressure vessel curing
Temperature evolution in vessel
Ensure complete filling of the part

In liquid composite molding, void free parts are key to maximum part performance. By applying flow simulation we support process engineers to evaluate injection strategies and to find optimum processing parameters to ensure complete filling of the part.

For RTM / Compression RTM / Resin infusion processes

<table>
<thead>
<tr>
<th>Predict</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Low front evolution</td>
<td>> Injection strategy</td>
</tr>
<tr>
<td>> Filling time</td>
<td>> Inlet / outlet position</td>
</tr>
<tr>
<td>> Pressure evolution</td>
<td>> Early stage process design</td>
</tr>
<tr>
<td>> Process induced filling variability</td>
<td></td>
</tr>
<tr>
<td>(e.g. preferential flow channels, inserts)</td>
<td></td>
</tr>
</tbody>
</table>

Effect of process induced variation
Example of a thin curved part
1. Area to be considered for venting strategy
2. Analysis of influence of possible runners created by textile forming
Pioneer in structural composites

Since 1990

- 1990 - 2015: Pioneer in structural composites (Lamborghini, McLaren, Mercedes SLR, BMW Z1)
 Supplier of non structural solutions for mass production of indoor panels
- 2013: First supplier qualified for structural composite parts mass production (BMW «i»)

Sustainable footprint

- Bio-based feedstocks utilization
- Best-in-class energy management
BMW M3 roof parts
with Araldite® XB 3523 / XB 3458

Benefits
- Low weight, high stiffness and high dimensional stability
- Fashion / aesthetics due to carbon look
- Class A finish
- Low shrinkage
Lamborghini Aventador LP700-4’s chassis

with Araldite® XB 3518 / Aradur® 22962

Benefits

- Low viscosity during injection, sufficient pot life
- Low shrinkage (surface quality)
- High mechanical properties (good balance Tg / Toughness)
- Good hot / wet properties
Araldite® case stories

CSL C218 indoor panel, produced by Boshoku Automotive GmbH (Europe) with Araldite® expandable epoxy system with natural fibers

Benefits
- Very short production cycle, less than 1 min (45 s at 150°C)
- Parts with high impact strength
- Rigid, very light and dimensionally stable parts
Keep our products at your fingertips

View our latest releases on SlideShare
Learn more about our products and access useful technical information through our latest brochures and white papers.

Download our mobile app on your smartphone
Select immediately the right composite formulated system for your specific need and contact a distributor.
www.huntsman.com/advanced_materials
advanced_materials@huntsman.com

Europe
Huntsman Advanced Materials (Switzerland) GmbH
Klybeckstrasse 200
P.O. Box - 4002 Basel
Switzerland
Tel. +41 61 299 1111
Fax +41 61 299 1112
Legal Disclaimer

Copyright © 2015 Huntsman Corporation or an affiliate thereof. All rights reserved.

The use of the symbol ® herein signifies the registration of the associated trademark in one or more, but not all, countries. While the information and recommendations included in this publication are, to the best of Huntsman’s knowledge, accurate as of the date of publication, nothing contained herein is to be construed as a representation or warranty of any kind, express or implied.