CompositesWorld
Published

The Rubik’s Cube of working efficiently with different composite materials

Each member of an aerospace OEM’s supply chain works on a different side of the project, ultimately driving toward the same goal: a better composite-intensive aircraft.

Ben Winters and Michael Quarrey of Web Industries Inc.

Share

rubiks cube analogy to composites

Source | Web Industries Inc., with permission from Rubik’s Brand Ltd.

In the race to scale up production to meet commercial aircraft demand, there is no single way to make the best airplane. As aerospace OEMs consider all of their material and processing options, they will continue to find innovative applications for both thermoset (TS) and thermoplastic composites (TPC), not to mention other choices such as dry carbon fiber fabrics and ceramic matrix composites (CMC).

Determining the optimal combinations of materials and processes to build each part, with the required performance and quality, and at the lowest total cost of acquisition (TCA), can be like solving a Rubik’s Cube. Each supply chain partner collaborates with the OEM to align a different side of the cube, with the overall goal of delivering a safe, high-performing, fuel-efficient, comfortable aircraft to the airline, on time and profitably.

Paradigms are constantly shifting as advanced materials and manufacturing techniques evolve. For every aircraft component and part — be it a wing, fuselage, stringer, interior part or engine — there is a cascading set of considerations. What materials are viable for the application? What are the different ways it can it be formatted — for example, as pad plies, spooled slit tape, chopped flake or bias ply? What layup technology is compatible with the formatted material — such as hand layup, robotic layup (in the form of automated tape or fiber placement), preforms or closed compression molding?

Each material and process (M&P) path brings exciting possibilities to the table. Ceramic matrix composites offer the ability to replace metals in high-temperature applications. Thermoplastics are garnering a lot of interest with their recyclability, weldability, fast processing and overall material handling simplicity. They remain stable at room temperature and aren’t as susceptible to environmental contaminants in the workplace as thermoset materials. Dry fabrics also give manufacturers freedom from refrigerated storage and open additional processing options. And, of course, thermosets continue to provide a tried-and-true solution for high-quality, consistent part formation — with well-established costs and proven scalability.

Leveraging core competencies

One could argue that excellent execution is as important as the chosen M&P path itself. After all, it does no good to save cycle time by using an out-of-autoclave (OOA) solution if a ply ends up missing or is laid up in the wrong order, and the whole manufacturing process must be restarted. When each supply chain partner can focus on its specialized role and core competencies, with an understanding of how that role achieves the end product objective, everyone wins.

For example, an effective formatting partner should be able to deliver different materials custom-tailored to the requirements of the aircraft manufacturer or tiered supplier — with better quality, faster speed and lower TCA than could be achieved in-house. Today, this often includes slitting, spooling, knife cutting, water-jet cutting, machining, chopping, preform ply stacking or kitting of materials, in formats ready for downstream automated, semi-automated or manual fabrication processes.

An outsource manufacturing partner also can help OEMs experiment with different M&P options before scaling up to a high-volume, mass-production solution. With a robust, outsourced formatting infrastructure at their disposal, aircraft manufacturers have access to the manufacturing equivalent of a gym membership in which to “work out” theories, rule out what doesn’t meet expectations and ramp up what works, at a fraction of the cost and trouble it would take to set up their own “gym” or testing facility.

OEMs and tiered suppliers have the opportunity to outsource their material’s information management to formatting partners. Such management includes predictive analytics for vendor-managed inventory programs, automated prepreg out-time tracking and management of material testing and qualification data.

By investing in equipment, technologies and associates dedicated to these capabilities, material formatters free their supply chain partners of these responsibilities, allowing them to focus resources on their core competencies. And when the innovators of aircraft design and assembly can focus on doing just that, the sky’s the limit in terms of what next-generation aerospace advances they will come up with next!


About the Authors

Michael Quarrey is vice president of Aerospace Operations for Web Industries. He has more than 30 years of management experience focused on creating high-engagement, high-performance teams. Quarrey holds an M.S. in System Dynamics from Dartmouth College and a B.S. in Computer Science from Worcester Polytechnic Institute. He can be reached at mquarrey@webindustries.com.

Ben Winters is general manager for Web Industries Inc. — CAD Cut Services and has more than 25 years of experience in working with aerospace customers. Web Industries is a precision formatter of carbon fiber composites and other materials used in aerospace manufacturing. Winters and the Web team engage with OEMs and tiered suppliers early in product development to devise formatting solutions optimized for the customer’s mix of materials, machines and manufacturing processes. He can be reached at bwinters@webindustries.com.

HEATCON Composite Systems
Airtech
pro-set epoxy laminate infusion tool high temp Tg
NewStar Adhesives - Nautical Adhesives
Harper International Carbon Fiber
3D industrial laser projection
Carbon Fiber 2024
CAMX 2024
CompositesWorld
CompositesWorld
Thermwood Corp.
KraussMaffei Metering Systems

Related Content

Bonding/Welding

Thermoplastic composites welding advances for more sustainable airframes

Multiple demonstrators help various welding technologies approach TRL 6 in the quest for lighter weight, lower cost.

Read More
Curing

Materials & Processes: Fabrication methods

There are numerous methods for fabricating composite components. Selection of a method for a particular part, therefore, will depend on the materials, the part design and end-use or application. Here's a guide to selection.

Read More
CAMX

Materials & Processes: Composites fibers and resins

Compared to legacy materials like steel, aluminum, iron and titanium, composites are still coming of age, and only just now are being better understood by design and manufacturing engineers. However, composites’ physical properties — combined with unbeatable light weight — make them undeniably attractive. 

Read More
Biomaterials

Materials & Processes: Resin matrices for composites

The matrix binds the fiber reinforcement, gives the composite component its shape and determines its surface quality. A composite matrix may be a polymer, ceramic, metal or carbon. Here’s a guide to selection.

Read More

Read Next

Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Wind/Energy

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Kraussmaffei Metering Systems