Airtech
Published

Composites-focused engineering, simulation services company launches in Germany

Simutence GmbH, a company started by Karlsruhe Institute of Technology graduates, offers custom simulation methods to composites manufacturers across end markets.

Share

Three recent graduates of Karlsruhe Institute of Technology (KIT, Karlsruhe, Germany) have launched a “virtual composites solutions” company called Simutence GmbH (also in Karlsruhe) to offer design and engineering services, including custom simulation methods that plug into popular simulation tools. Customers in the automotive, aerospace and sporting goods/recreational fields are the primary targets.

composites simulation startup Simutence

Simutence GmbH (Karlsruhe, Germany), a “virtual composites solutions” company, is now offering design and engineering services, including custom simulation methods that plug into popular simulation tools. The owners have worked on a number of public and private composites-intensive programs, so are well experienced in converting metal designs to composites using a wide range of thermoset and thermoplastic materials and processes. Source | Simutence GmbH

The company was co-founded by Dr.-Ing. Martin Hohberg (who specializes in filling simulation for discontinuous-fiber-reinforced thermoplastics and thermosets, particularly locally reinforced, compression-molded sheet molding compound); Dr.-Ing. Benedikt Fengler (who specializes in topology and layup optimization, and leads group efforts in the use of locally continuous reinforcement in otherwise discontinuous fiber composites); and Dominik Dörr (a doctoral candidate with a specialization in draping simulation, especially unidirectional thermoplastic tapes, and who leads group efforts in continuous fiber composites). The trio met during their doctoral studies at KIT, where they also participated in a consortium focusing on transportation lightweighting solutions, including composites. Additionally, they worked on Project SMiLE (System integrative Multi-material Lightweight construction for Electromobility) sponsored by the German government (see “Hybrid thermoplastics give load floor impact strength”).

Virtual process chain

The team provides engineering consulting and simulation work, develops and supplies custom-made plug-in/add-on simulation tools, and offers training — including how to convert metal designs to composites and how to select and optimize material and process technologies — for a wide variety of thermoset and thermoplastic composites as well as hybrid metallic/composite structures. For customers without in-house engineering support or without engineers familiar with composites, Simutence can provide full design engineering services as well as training. And for customers struggling with thorny engineering issues, the team has developed a series of its own software plug-in/add-on tools for customers that work in popular multipurpose finite element analysis (FEA) codes like Abaqus (from Dassault Systèmes, Vélizy-Villacoublay, France) and process simulation codes like Moldflow (from Autodesk Inc., San Rafael, Calif., U.S.). Where those standard tools don’t work or where a customer needs a different type of engineering solution, the team also develops custom tools to meet specific requirements. 

“Our mission is to help designers and manufacturers of composite parts develop and optimize lightweight parts and processes by our virtual process chain,” explains Fengler. Developed at KIT and “industrialized” (commercialized) by the team, the virtual process chain is the product development approach taken by Simutence on customer projects and is supplied (as plug-in/add-on tools) to customers for in-house engineering projects. It begins by defining engineering goals and then developing a materials-specific design to meet all functional requirements. Next, process simulation is applied to assure manufacturability, select suitable processing parameters and predict conventional manufacturing effects (for example, forming-or filling-induced fiber orientation) as well as defects (for example, wrinkling, dry spots, filling issues, etc.).

 

composites simulation virtual process chain Simutence’s virtual process chain is said to reduce the cost and time of multiple iterations of physical testing owing to the accuracy and reliability of the custom virtual prototyping tools the company employs. Source | Simutence GmbH
 

 

“Our advanced modeling techniques for process and structural simulation as well as the interfaces we’ve built to allow for the continuous transfer of manufacturing effects to subsequent simulation steps enables us to enhance the modeling capabilities of commercial software architectures,” notes Hohberg. “In turn, this means we can significantly increase predictive accuracy and provide our customers with simulation results faster.”

Since dimensional accuracy can be a critical issue with composite designs, the team next applies warpage and thermomechanical analyses (including curing/crystallization kinetics) to predict dimensional changes and to evaluate residual stresses. The last step is to conduct structural analyses, in order to assure the design fulfills load requirements, determine stiffness and provide damage initiation and initial failure modes analysis.

Process simulation expertise

“The structural behavior of fiber-reinforced composites is distinctly influenced by manufacturing effects,” adds Dörr. “By applying our virtual process chain, we are able to consider manufacturing effects on structural performance. These virtual design loops help to reduce development time and resources by eliminating many rounds of design and physical part testing owing to their accuracy and reliability. Since we operate in a neutral exchange format, we can link to a variety of different software packages our customers are currently using.”

Reportedly, the team already is hard at work readying the first release of plug-ins/add-ons for thermoforming simulation, filling simulation of compression-molded sheet molding compound (SMC), and interfaces for mapping and homogenization — all of which will be available for the Abaqus FEA suite. Beyond that, the partners are engaged in applying the entire virtual process chain to customer engineering projects.

“Lightweight construction necessitates clever use of materials, processes and design techniques,” continues Fengler. “Customers using holistic, interdisciplinary approaches to product development from a continuous CAE [computer-aided engineering] supply chain like Simutence benefit in terms of speed, reliability and cost. Our expertise in composites simulation and our background as a spinoff from Karlsruhe Institute of Technology enables us to support state-of-the-art simulation methods.”

Last May, Simutence was selected as one of six Hemholtz Enterprise funding recipients (from Hemholtz Association of German Research Institutes, Bonn and Berlin, Germany) and has secured startup funding for its first year. Initially, the team will be co-located at KIT, sharing office space and equipment with the university. Although an independent entity, when needed Simutence engineers will be able to draw upon R&D resources in the areas of process technology from Fraunhofer Institute for Chemical Technology (Pfinztal, Germany) and the University of Western Ontario (London, Ontario, Canada) and in materials characterization from the Institute for Applied Materials at KIT.

 

Airtech
Smart Tooling
Airtech
A manufacturing puzzle
CW Tech Days Sustainability - Register Today!
Keyland Polymer
HEATCON Composite Systems
Thermwood Corp.
Sysenqo high performance materials
NewStar Adhesives - Nautical Adhesives
KraussMaffei Metering Systems
Chem Trend

Related Content

Epoxies

Overair's Butterfly eVTOL prototype to integrate composites-intensive design

Aiming for first flight tests in the latter half of 2023, Overair’s Butterfly aircraft uses Toray carbon fiber/epoxy prepreg strategically to cut weight on its battery-powered, quiet aircraft.

Read More
Aerospace

Daher CARAC TP project advances thermoplastic composites certification approach

New tests, analysis enable databases, models, design guidelines and methodologies, combining materials science with production processes to predict and optimize part performance at temperatures above Tg (≈150-180°C) for wing and engine structures.

Read More
Defense

UMaine Composites Center 3D prints logistics vessel for U.S. Department of Defense

Two 3D-printed vessels capable of transporting two shipping containers and a Marine rifle squad with three days of supplies mark groundbreaking composite manufacturing milestone.

Read More
Work In Progress

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More

Read Next

Out of Autoclave

Hybrid thermoplastics give load floor impact strength

Project leads to development of new compression process for selective application of D-LFT on UD tape laminates.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Thermoplastics

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Airtech International Inc.