CW Blog

2-part epoxy for increased composite aerostructures production via RTM

 

This is the third in my series of blogs about technologies you should check out at CAMX 2019 (Sep 23-26, Anaheim, CA, U.S.). Hexion (Columbus, Ohio, U.S.) has developed a two-component (2K) system for RTM of aerostructures based on its Epikote System 600 epoxy resin. The introduction below will explain why this development is important. After that, I give more details on this new 2K system and how Hexion is meeting aerospace OEMs’ demands for in situ quality assurance of the mixed resin. At bottom, I also discuss Hexion’s 2K infusion/RTM epoxy for fire-resistant (FR) applications.

Read More
Accelerating thermoplastic composites in aerospace

 Continuous fiber-reinforced thermoplastic composites (TPCs) have been cited as an enabling technology for the future of sustainable aircraft, offering increased production rates of lightweight, high-toughness parts that can be joined without holes or fasteners into economical welded assemblies.

 

Read More
Innovating energy delivery for more efficient composites manufacturing

 

Heraeus Noblelight innovates a wide range of industrial processes using the power of light. To give some background, all light is electromagnetic radiation (EMR) and has an inherent wavelength and frequency, as can be seen in the diagram below. Heraeus Noblelight develops devices that use light along a large portion of this spectrum, ranging from infrared (IR) emitters to LED lamps and ultraviolet (UV) systems, as well as arc and flash lamps.

Read More
Can the automotive industry turn to face the change?

 

The Society of Plastics Engineers (SPE, Bethel, Conn., U.S.) held its 19th annual Automotive Composites Conference & Exhibition (ACCE) in Novi, Michigan, Sept. 4-6. The theme of the conference was “Composites — Forming the Future of Transportation Worldwide,” and much of the programming reflected a growing interest from transportation OEMs in the role composites technologies can play in next-generation mobility.

Read More