Vectorply
Published

Unweighting a crane to increase payload limit

Rethinking a crane stinger with carbon fiber for a more “uplifting experience.”

Share

The payload capacity of a crane depends on the strength and stiffness of the materials used to make the arm. It also depends, ironically, on the arm’s weight. That is, the greater the arm’s weight, the less payload it can bear. Conversely, you can increase the payload capacity of the crane by reducing the mass of its arm. In other words, the crane arm is an ideal application for composites.

The Manitowoc Co., a crane manufacturer located in Shady Grove, PA, US, recognized this advantage and decided to target the stinger or fly jib — the final segment of an articulating crane arm — on one of its truck-mounted cranes, replacing the traditional 24-ft (7.3m) steel structure with one of carbon fiber composite.

Sammy Munuswamy, senior principal engineer, global engineering and innovation at Manitowoc, says the company is “in the business of building lifting experiences for our customers around the world.” And a quality “lifting experience,” in Manitowoc’s view, should be one where
 the tool (crane) facilitates the jobs to be done at a variety of jobsite environments, including buildings, roadsides, heavy construction sites and more. “Cranes are getting lighter,” Munuswamy says, “and we need materials to meet that expectation. The stinger section was identified as an ideal candidate for conversion into a carbon fiber light-weight structure since the outermost crane arm components generate the highest bending moments on the crane. Therefore, reducing weight in such members brings the most tangible benefits.”

The stinger was developed by Manitowoc in collaboration with Riba Composites Srl (Faenza, Italy), which has extensive experience designing and manufacturing large composite structures. Munuswamy says one of the challenges the company faced was the reality that cranes, as a cost-sensitive, low-volume product, do not allow for expensively engineered structures. In addition, the composite stinger is a drop-in replacement for its predecessor.

Because the carbon fiber stinger works as a component retrofit compatible with existing cranes, Riba's engineers exploited all the available design space, maximizing the moment of inertia and the geometric properties of the stinger. The result is a hybrid structure where steel and composite match to take advantage of the specific properties of each material. The junction between steel and composite relies on bonding and bolts, which allow an effiient solution.

Andrea Bedeschi, general manager at Riba, says the composite stinger is hand-laid, using carbon fiber prepreg and autoclave cure. The carbon fiber, standard-modulus 12K and 24K tow, is supplied by Mitsubishi Chemical Carbon Fiber & Composites Inc.. The resin is a toughened epoxy. Riba performed NDT evaluation of the stinger; physical load, stability and structural performance testing was done by Manitowoc.

The composite stinger is 35% lighter than its steel predecessor and, says Munuswamy, increases payload capacity 12-15% more than the steel version in some specific boom configurations. The composite stinger also is more expensive than its steel predecessor, but Munuswamy says this is more than compensated for by increased jobsite efficiency and transportability.

Will Manitowoc expand carbon fiber use to other crane components? “This [the stinger] is leading us in that direction,” Munuswamy says. “The stinger was the first step.” 

Toho Tenax America Inc.

pro-set epoxy laminate infusion tool high temp Tg
Harper International Carbon Fiber
Custom Quantity Composite Repair Materials
BARRDAY PREPREG
Renegade Material Composites
3D industrial laser projection
Toray public database prepreg materials
Nanosilica Filled Adhesives
Composites One
world leader in braiding technology
CompositesWorld
CompositesWorld

Related Content

Autoclave

Plataine unveils AI-based autoclave scheduling optimization tool

The Autoclave Scheduler is designed to increase autoclave throughput, save operational costs and energy, and contribute to sustainable composite manufacturing.

Read More
Autoclave

Saint-Gobain, Roctool join efforts to boost composite 3D textile preform parts manufacturing

3D automated knitted preform layup technology and heat and cooling technologies for additional curing efficiency open a new window of application opportunities for composite and thermoplastic parts.

Read More
Prepregs

PRF Composite Materials introduces RP570 FR eXpress cure prepreg system

Ultra-fast, fire-retardant formulation targets snap cure press molding of structural components.  

Read More
Autoclave

Busch expands autoclave solutions

Busch announces its ability to address all autoclave, oven and associated composites manufacturing requirements following the acquisition of Vacuum Furnace Engineering.

Read More

Read Next

Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Wind/Energy

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Vectorply