Composites One
Published

The meaning of next-generation

When the past becomes the present and the present becomes the future, the future starts looking a lot like the past. Got that?

Share

Photo Credit: Getty Images

The composites industry likes the term “next-generation.” We use it to describe fighter jets, commercial aircraft, cars, trucks, software, raw materials and manufacturing processes. Next-generation implies creativity, innovation, novelty and forward-thinking. It also implies that the past is being left behind, along with all of the “old” ways of doing things. Such bipolarity can lead to some simplistic thinking — that composites history is antiquated and useless, while the next-generation-filled future is full of nothing but promise and hope. 

CW might even be guilty of some of this thinking, given that we have titled this supplement “Next-Generation Materials and Processes.” Our intent was that we would shed light on some of the materials and process technologies that likely will be leveraged by composites fabricators being tasked with meeting the high-quality, high-rate standards that are and will be set by the industry’s customers over the next decade. 

By that standard, we have a fair collection of stories here, covering additive manufacturing, thermoplastics, reprocessable thermosets, ceramic matrix composites, large aerostructures, virtual qualification and hydrogen storage.

But a funny thing happens when you are tasked with thinking about the materials and processes that represent the next generation of composites manufacturing: That bright line separating the antiquated past and the sparkling future gets pretty fuzzy pretty quickly. It becomes very difficult to point to a given material or process and declare it definitively in the past or in the future. 

In any case, it is clear that the technologies leading us into the future are firmly rooted in the past, and that is how it should be.

Take, for example, liquid resin infusion. Is this a next-generation process? No, it’s been used in composites manufacturing for decades. But it’s being used today to produce large aerostructures and is a serious contender for high-rate manufacturing of single-aisle commercial aircraft. Doesn’t that qualify it as next-generation?

How about compression molding. Is this a next-generation process? No, it’s been used in composites manufacturing for decades. But it’s likely one of the enabling technologies for high-volume autocomposites manufacturing. Doesn’t that qualify it as next-generation?

We even talk about out-of-autoclave thermoset molding processes and thermoplastic composites as if they were just discovered, but both have enjoyed widespread use since the composites industry was born. 

The truth is that the innovation the composites industry employs to create the next generation of materials and processes does not depend on developing something new and different, but adapting proven technologies to serve highly dynamic and demanding applications. And this is possible because composites materials and processes themselves are dynamic and highly adaptable — in many ways ideally suited to meet the fast-evolving needs of airframers, carmakers, boatbuilders, wind turbine manufacturers and much more. 

Because of this, it sometimes seems like CW is constantly reporting on next-generation materials and processes. Just in 2020 alone, we have reported, among many topics, on complex FRP panels manufactured for a museum in Dubai, a novel wind blade design, infusion of integrated wing skins and stringers for a commercial aircraft, composites in the 2020 Corvette, highly automated RTM to fabricate aircraft spoilers, high-volume manufacture of highy aligned discontinuous fibers and composites use in wastewater treatment systems.

None of these applications involves use of materials and processes that do not have a long history in the composites industry. But they all demonstrate a concerted, creative effort to design and apply these materials and processes with greater efficiency and greater quality. And if that is the definition of “next generation” — efficiency with quality — that’s a good thing. In any case, it is clear that the technologies leading us into the future are firmly rooted in the past, and that is how it should be.

ViRTEK IRIS 3D
Composites One
Wickert Hydraulic Presses
Janicki employees laying up a carbon fiber part
Compression Molding
Precision Board Urethane Tooling Board
Park Aerospace Corp.
CAMX 2024
CompositesWorld
HEATCON Composite Systems
Carbon Fiber 2024
Keyland Polymer

Related Content

Editorial

CompositesWorld SourceBook 2024

Welcome to CW’s annual SourceBook, your guide to suppliers of machinery, materials, software and other services for the composites industry.

Read More
Infrastructure

Why aren't composites synonymous with infrastructure?

The U.S. seems poised to invest heavily in infrastructure. Can the composites industry rise to the occasion? 

Read More
Wind/Energy

CompositesWorld is on the road again

Since CW’s infancy, its editors have strived to imbue its coverage with a sense of place, whether that’s through plant tours, facility visits or trade shows. After a pandemic, this has never seemed more important.

Read More
Editorial

CAMX 2022: 10 reasons to attend

Looking for a good reason to attend CAMX 2022? Look no further. 

Read More

Read Next

Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Wind/Energy

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Thermoplastics

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Composites One