Vectorply
Published

I have seen the future and it is coming

The last 20 years were good to composites. What does the next 20 years have in store?

Share

 

composite access cover

The cover story for CW’s March 2020 issue explores the growing use of composites in infrastructure. 

 

Now that the first two decades of the 21st century are behind us, there is a natural tendency to look back at the last 20 years and take stock of things — personally, professionally, culturally, etc. The result has been a long stream of “best of” and “worst of” lists that attempt to put what’s happened to us in perspective.

We can do the same with composites manufacturing and look back on what has been, arguably, the most consequential 20 years of growth the industry has ever seen. In all this looking backward, however, I keep asking myself: What do the last 20 years in composites M&P tell us about the next 20 years? The short answer is that I don’t know. But I do have a few things that should be watched.

The first is cost. If you have been in this industry for any length of time, you know that composites tend to be — on a unit basis — more expensive than legacy materials. And for many years, this was a huge hurdle. It was just plain difficult to get potential customers to look past the up-front cost of replacing a metallic part with a composite one. Then, a few years ago, we started hearing about composites “buying their way onto” programs. Thus began a more concerted effort to evaluate how composites might prove more cost-effective over the life of a part or structure. This is made possible because composites are more durable than legacy materials. And, when weight-saving is involved, cascading benefits include fuel and energy conservation. For many years, a value-add of composites has been the maintenance advantage they convey. As the Boeing 787 and the Airbus A350 enter their second decade of service, and as airlines assess the performance of these composites-intensive aircraft, I think we are going to discover that the ease of maintenance of composite structures is, in fact, a major benefit.

What do the last 20 years in composites M&P tell us about the next 20 years?

The second is automation/data. I throw these two together because they go hand-in-hand. One of the consequences of composites becoming a part of the standard materials pallette for manufacturers is that expectations are raised. The industry’s dependence on hand layup and spreadsheets just won’t cut it in the next 20 years. Every major end market that consumes composite materials is going to do so at volumes heretofore unseen. Single-aisle replacements for the 737 and the A320 will be built at rates of 60-100 per month. Everyday car and truck models are produced at rates of 500,000 per year. The wind industry, already the largest consumer of composite materials, is poised to grow substantially in the next 20 years. And if the oil and gas industry wakes up tomorrow and decides that composite pipes are the future, there might not be enough carbon fiber in the world to do the job. The only way to keep up is with automation that meets the volume, quality and consistency requirements of the customer. And, very soon, you will not be able to deliver a composite part or structure to a customer without data that documents conformance to design, material, processing, finishing and quality specifications. In short, if you are a composites fabricator and have not hired a chief data officer, start looking.

The third, and final, is design engineering. Composites are great because the variety of resin, fiber and process types available engender engineered solutions for almost any application. Composites are a challenge because the variety of resin, fiber and process types available engender engineered solutions for almost any application. All of this complexity, it turns out, is difficult to model in a software environment. Over the last 20 years, this has created design uncertainty — the lingering feeling that the composite part you designed might or might not perform as expected. This has led to the 10% Rule: Design your composite part to the spec, and then add 10% (resin, fiber, etc.) just in case. That uncertainty will go away in the next 20 years; design software is well on its way to more than matching composites’ complexity.

Am I wrong? Time will tell, or you can tell me. Let me know what you think the next 20 years has in store. Email me at jeff@compositesworld.com.

Harper International Carbon Fiber
BARRDAY PREPREG
Composites One
3D industrial laser projection
Renegade Material Composites
Nanosilica Filled Adhesives
Custom Quantity Composite Repair Materials
world leader in braiding technology
pro-set epoxy laminate infusion tool high temp Tg
Toray public database prepreg materials
HEATCON Composite Systems
Carbon Fiber 2024

Related Content

Trends

Cryo-compressed hydrogen, the best solution for storage and refueling stations?

Cryomotive’s CRYOGAS solution claims the highest storage density, lowest refueling cost and widest operating range without H2 losses while using one-fifth the carbon fiber required in compressed gas tanks.

Read More
Infusion

Novel dry tape for liquid molded composites

MTorres seeks to enable next-gen aircraft and open new markets for composites with low-cost, high-permeability tapes and versatile, high-speed production lines.

Read More
Aerospace

Plant tour: Joby Aviation, Marina, Calif., U.S.

As the advanced air mobility market begins to take shape, market leader Joby Aviation works to industrialize composites manufacturing for its first-generation, composites-intensive, all-electric air taxi.

Read More
Infrastructure

Recycling end-of-life composite parts: New methods, markets

From infrastructure solutions to consumer products, Polish recycler Anmet and Netherlands-based researchers are developing new methods for repurposing wind turbine blades and other composite parts.

Read More

Read Next

Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Wind/Energy

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Composites One