Precision Board High-Density Urethane
Published

What the 787 says about the future

My oldest son is 12. College for him is seven years away, but he’s already thinking about it.

Share

My oldest son is 12. College for him is seven years away, but he’s already thinking about it. Half-jokingly, I suggested he attend the University of Wyoming, study composites materials and manufacturing and then seek a job at Adam Aircraft (we live in Colorado). The future, I said, is bright. This got me to thinking, though: When he finishes college, where in their evolution will aerospace composites be?

A seminal moment in that evolution will come this summer when Boeing rolls out the first 787 Dreamliner — an event that already is generating the kind of hype that guarantees a worldwide audience. It’s easy to see why: Migration from metal to composites in aircraft construction seems, to the uninitiated, an almost radical concept. Even a technically astute layperson can find it difficult to grasp the idea of a resin reinforced with carbon fibers providing structural support in a passenger airplane.

While we in the industry applaud the paradigm shift the Dreamliner represents, it’s clear that the aerospace industry has been headed this way for some time. The use of carbon fiber in the fuselage on a commercial aircraft is new, but it’s only the latest step in a series. In some ways, the use of composites to the extent seen in the 787 was inevitable.

As far back as the mid-1960s, Boeing dabbled with composites use in commercial aircraft. In 1973, Boeing built carbon/epoxy spoilers for the 737. In 1975, Douglas Aircraft built carbon/epoxy upper rudders for the DC-10. In 1980, Boeing made carbon/epoxy elevators for the 727, followed by horizontal stabilizers on two 737s in 1984. In the early ’80s, the 757 and 767 saw carbon/epoxy used in elevators, rudders, spoilers, cowlings and flap track fairings. In the mid ’80s, Airbus used carbon/epoxy in the vertical stabilizer on the A310-300 and in the horizontal stabilizer on the A320. Boeing’s 777 used carbon/epoxy for the vertical tail and horizontal stabilizer. By the ’90s, composites accounted for 10 to 15 percent of a plane’s structural weight. Composites on the A380 weigh in at 33 tons and account for about 16 percent of its airframe weight, making it the most composites-intensive plane to date.

The big evolutionary step with the 787 is the use of carbon/fiber throughout the plane’s structure — fuselage, windows, wing boxes, control surfaces, tail, stabilizers. And we eagerly await the next step as details of composites use are revealed in Airbus’ A350 XWB.

In light of all of this evolution, where will composites use be in the next decade and beyond? Certainly there are lessons being learned even today as the first 787 is assembled. We know Boeing and Airbus (and all aerospace) engineers are constantly discovering new ways of orienting tape and fiber and new ways of using new resins. Where else might composites find use? What role will emerging out-of-autoclave materials and processes play? How fast will automated tape layup machines get? What will tooling be made from? Will nanocomposites find use in commercial aircraft?

The 787 is, in many ways, revolutionary. It represents a thorough departure from a design and materials philosophy that has governed and dominated the commercial aircraft industry for generations. The 787 is not, however, merely a keen technical trick. It’s a major evolutionary adaptation to a variety of external forces: Rising fuel prices, demand for increased aircraft efficiency and the need for enhanced passenger comfort. We’ll watch this evolution with interest and, as usual, keep you posted on its progress.

Park Aerospace Corp.
Precision Board High-Density Urethane
Composites One
UV Cured Powder Coating from Keyland Polymer
Janicki employees laying up a carbon fiber part
De-Comp Composite Materials and Supplies
HEATCON Composite Systems
Harper International Carbon Fiber
KraussMaffei Metering Systems
CAMX 2024
pro-set epoxy laminate infusion tool high temp Tg
3D industrial laser projection

Related Content

Aerospace

One-piece, one-shot, 17-meter wing spar for high-rate aircraft manufacture

GKN Aerospace has spent the last five years developing materials strategies and resin transfer molding (RTM) for an aircraft trailing edge wing spar for the Airbus Wing of Tomorrow program.

Read More
Ketones

Materials & Processes: Tooling for composites

Composite parts are formed in molds, also known as tools. Tools can be made from virtually any material. The material type, shape and complexity depend upon the part and length of production run. Here's a short summary of the issues involved in electing and making tools.

Read More
BMI

Materials & Processes: Fabrication methods

There are numerous methods for fabricating composite components. Selection of a method for a particular part, therefore, will depend on the materials, the part design and end-use or application. Here's a guide to selection.

Read More
Automotive

Materials & Processes: Fibers for composites

The structural properties of composite materials are derived primarily from the fiber reinforcement. Fiber types, their manufacture, their uses and the end-market applications in which they find most use are described.

Read More

Read Next

Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Thermoplastics

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Pressure Vessels

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Precision Board High-Density Urethane