Chem Trend
Published

Evolution of tailored D-LFT

In the past two decades, two competing composite technologies — sheet-form glass-mat thermoplastic (GMT) and pelletized long-fiber thermoplastic (LFT) — led to the development of a new form of glass-reinforced thermoplastic composite.

Share

In the late 1990s and early 2000s two competing composite technologies — sheet-form glass-mat thermoplastic (GMT) and pelletized long-fiber thermoplastic (LFT) — led to the development of a new form of glass-reinforced thermoplastic composite.

GMT producers had been working since the 1980s to enhance the moldability of continuously reinforced, randomly oriented GMT composites, which were processed via compression molding. GMTs were very tough and relatively stiff, and they had less mass and could be processed faster than the thermoset sheet-molding compound (SMC) and metals that they commonly competed against. But as a semifinished good, traditional GMT was still costly and heavier than injection molded thermoplastics and posed significant challenges for molders who needed to fill intricate design features. The primary problem was glass bridging, which led to resin-rich areas that tended to fail before the rest of the part.

To address molding and filling issues, GMT producers experimented with discontinuous chopped-fiber products. They eventually phased out traditional continuous, randomly oriented fiber forms and settled on products whose fiber lengths (going into the tool) were on the order of 50 to 100 mm (1.97 to 3.94 inches). In situations that demanded greater stiffness and strength, their properties were further enhanced through the addition of sheets or blanks of unidirectional (UD) or fabric-reinforced GMT. This improved moldability and made GMT malleable enough for complex geometries. It also reduced cost and mass in applications where higher performance wasn't necessary, and that made the products more competitive against the rising tide of long-fiber thermoplastics.

Parallel to developments in GMT, producers of injection molded thermoplastics had been searching for ways to increase fiber length and fiber-volume fraction (FVF) to boost mechanical performance. The goal was to produce parts that could compete better in more structural applications without sacrificing the processing speeds, surface finish and finished part complexity that characterize injection molded thermoplastics.

Gradually, the glass length in precompounded resin pellets increased to 13 mm/0.51 inch, which was the maximum size that could be accommodated by the feed throat on the compounding unit of the injection molding machine. Longer fibers not only broke, but also tended to clog the equipment. In an effort to get around these limitations, inline compounding (ILC) was developed. ILC combines resin and additives at the press and brings them together with continuous-glass reinforcement (fed from large spools). The combined resin, additive and fiber mixture is immediately cut into a log or charge that is subsequently placed (manually or automatically) into an injection press and formed into parts. Later, ILC was combined with compression molding presses as well.

As GMT suppliers gave up strength and stiffness to enhance moldability and reduce mass and cost by using shorter fibers, and as injection molders sought greater strength and stiffness by incorporating longer fibers at higher fiber volumes, ILC was a technological meeting point that facilitated the direct long-fiber thermoplastics (D-LFT) process, which typically features fibers that are 20 to 40 mm/0.8 to 1.6 inches prior to molding. Further work with compression molding grades of these materials borrowed a technique from GMT producers by laying in additional blanks or charges of continuous-fiber-reinforced forms of composite with the same matrix. The technique of combining discontinuous with continuous reinforcements was developed in Europe, primarily for the automotive industry, and became known as tailored D-LFT.

TOPCON24
U.S. Polychemical Acrastrip
Toray Advanced Composites
Kent Pultrusion
Wabash
custom hydraulic press
Master Bond
Sysenqo high performance materials
CompositesWorld
Keyland Polymer
CompositesWorld
industrial CNC routers

Related Content

Out of Autoclave

Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.

Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.

Read More
Carbon Fibers

Cycling forward with bike frame materials and processes

Fine-tuning of conventional materials and processes characterizes today’s CFRP bicycle frame manufacturing, whether in the large factories of Asia or at reshored facilities in North America and Europe. Thermoplastic resins and automated processes are on the horizon, though likely years away from high-volume production levels.

Read More
Fabrics/Preforms

Plant tour: Joby Aviation, Marina, Calif., U.S.

As the advanced air mobility market begins to take shape, market leader Joby Aviation works to industrialize composites manufacturing for its first-generation, composites-intensive, all-electric air taxi.

Read More
Aerospace

Materials & Processes: Composites fibers and resins

Compared to legacy materials like steel, aluminum, iron and titanium, composites are still coming of age, and only just now are being better understood by design and manufacturing engineers. However, composites’ physical properties — combined with unbeatable light weight — make them undeniably attractive. 

Read More

Read Next

Sheet Molding Compound

Hybrid thermoplastic molding: Toughening automotive composites

Tailored D-LFT with continuous and discontinuous glass offers best combination of strength, moldability.

Read More
Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Syensqo high performance materials