Airtech
Published

3D printed tools are in production at Dassault Falcon Jet

The trend of employing polymeric additive manufacturing (AM) or 3D printing for composite tooling is growing.

Share

This section of a large 3D printed tool is being used for part production at Falcon Jet.

The trend of employing polymeric additive manufacturing (AM) or 3D printing for composite tooling is growing. As we reported back in our July 2015 issue (here’s the link: http://www.compositesworld.com/articles/3d-printing-moves-into-tooling-components), many in the composites industry want to reduce tooling lead times to keep pace with composite part design cycles, and to keep up with accelerating manufacturing and processing speeds, across the spectrum of markets but especially in aerospace and automotive. And AM is a big enabler, since tools can be made in a matter of days or hours, and — with improving materials and build designs — stand up to autoclave cycles, in many cases. 

Stratasys Inc. (Eden Prairie, MN, US), a manufacturer of direct digital manufacturing and rapid prototyping systems using Fused Deposition Modeling (FDM) technology for producing parts and tools, is working with many customers on both part and AM tooling concepts and materials, among them Dassault Falcon Jet (South Hackensack, NJ, US and Little Rock, AR, US). Tim Schniepp, director of Composite Tooling Solutions at Stratasys with extensive aerospace experience, recently introduced me to Bastien Carel and Gregory Hilbert of Dassault Falcon Jet’s composites engineering team located at Dassault Falcon Jet’s completion center in Little Rock, where the company’s business jets undergo final assembly, including wiring, painting and installation of interiors. Fifty to 70 aircraft undergo completion per year at the Little Rock facility.

First, a little background on Dassault Falcon Jet: this venerable French aviation company, which began in 1916 and just celebrated its centenary, was founded by aeronautical engineer Marcel Bloch (later known as Marcel Dassault), who first developed the two-bladed Éclair propeller and founded the Societe d’Etudes Aeronautiques (SEA) to build planes for France in World War I. Later, Bloch’s company designed and built airliners for Air France, prior to World War II. The company grew tremendously between 1945 and 1975, and was responsible for the Mirage and Mystère combat fighter jets as well as French civil aircraft. Dassault Falcon Jet is one of the leaders in the business jet segment, with the Dassault Falcon 20 making its first flight in 1963. Today the company is known for its “heavy” business jets, among the largest in the bizjet market. Notably, Marcel Dassault and his engineers helped develop computer-aided design tools for the design of the company’s aircraft, and that ultimately led to CATIA and the spinoff of software company Dassault Systèmes.

Carel and Hilbert report that they are designing and developing large tools, up to 4.6m in length, for production of honeycomb-cored composite interior fittings, including flat and curved panels, bulkheads, and aircraft lavatory wall sections. Tools are 3D printed using a Stratasys Fortus 900mc, the largest production printer currently offered by Stratasys. Material is Ultem 1010 polyetherimide (PEI), with a Tg of 420°F; raw materials are supplied by SABIC (Pittsfield, MA, US) to Stratasys to produce the final FDM filament. The tools will be produced in segments, joined in a tongue-in-groove manner and bonded with an epoxy, typically with a product such as Henkel’s (Rocky Hill, CT, US) EA9394. Says Carel, “We are trying a near-net approach to minimize any issues with joining.” Falcon Jet is experimenting now with joining and post-cure machining of the tools, to achieve the finished surface requirements, as well as sealers, to ensure vacuum integrity.

The FDM tools are capable of meeting requirements for dimensional accuracy says Carel, because the composite parts are vacuum-bagged and oven-cured at 250°F. Several rounds of test part cure cycles have been carried out so far, with “no visible flaws,” report Carel and Hilbert. Testing will continue through April, with the plan to put the 3D tools into the production process after that. Why 3D printing for tooling? Carel explains, “We are in a situation with high part variability and low volume,” in which jets receive customized interior layouts according to each customer’s specs. “We’re utilizing AM tooling as a complement to more traditional tooling. It’s not a direct competition with metal tooling, but it can be more efficient in terms of time and cost.”

Stay tuned for more developments in AM tooling. Schniepp, Hilbert and Carel all agree: in the next few years, 3D printed tooling has potential to be just as robust and production-capable as similar non-metallic tooling materials.  

Smart Tooling
Airtech
KraussMaffei Metering Systems
Thermwood Corp.
Sysenqo high performance materials
CompositesWorld
CompositesWorld
A manufacturing puzzle
CAMX 2024
Chem Trend
Airtech
Carbon Fiber 2024

Related Content

Nanomaterials

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Infrastructure

Materials & Processes: Fibers for composites

The structural properties of composite materials are derived primarily from the fiber reinforcement. Fiber types, their manufacture, their uses and the end-market applications in which they find most use are described.

Read More
Out of Autoclave

One-piece, one-shot, 17-meter wing spar for high-rate aircraft manufacture

GKN Aerospace has spent the last five years developing materials strategies and resin transfer molding (RTM) for an aircraft trailing edge wing spar for the Airbus Wing of Tomorrow program.

Read More
Thermoplastics

Plant tour: Qarbon Aerospace, Milledgeville, Ga. and Red Oak, Texas

Veteran aerostructures Tier 1 transforms into 21st century leader in thermoplastic composites and multiple new markets.

Read More

Read Next

Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Thermoplastics

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Pressure Vessels

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Airtech International Inc.