REL, NYU-Poly develop aluminum-composite brake rotor

Polytechnic Institute of New York University (NYU-Poly) and REL Inc. (Calumet, Mich.) have developed a next-generation aluminum composite brake rotor potentially weighing 60 percent less than today's cast iron rotors with triple the life expectancy.

Related Topics:

Researchers at the Polytechnic Institute of New York University (NYU-Poly) and REL Inc. (Calumet, Mich.) reported on Jan. 17 that they have developed a next-generation aluminum composite brake rotor potentially weighing 60 percent less than today's cast iron rotors with triple the life expectancy.

Due to expense, current composite brakes on the market are used primarily on motorcycles, race cars and high-performance sports cars. This new, fiber-reinforced, metal matrix composite (MMC) brake rotor is designed for the mass market. It will be easier to manufacture, and the fiber reinforcements will provide longer life span.

Researchers estimate that their composite rotor will shave approximately 30 lb/13.6 kg from a mid-size sedan — a significant advantage in an industry facing fleet a fuel economy requirement of 54.5 mgp by 2025.

REL Inc., a developer of MMC transportation and aerospace components, received a $150,000 Phase I Small Business Innovation Research Grant from the U.S. National Science Foundation to develop the initial product design, material and manufacturing process. The company tapped the expertise of NYU-Poly Mechanical and Aerospace Engineering associate professor Nikhil Gupta and his Composites Materials and Mechanics Lab to develop the technology for automotive application. The collaboration will result in a prototype, first-of-its-kind rotor.

Gupta and REL are developing a one-piece brake rotor tailored to meet the extreme and variable temperature and loading conditions. Most of today's brake rotors are made of cast iron, which offers strength but at a cost of weight. Iron also doesn't adapt well to the demands placed on different sections of the rotor. A brake rotor has three functional zones, each of which requires a material with distinct strain and thermal properties to function optimally. Temperature and pressure changes across the rotor surface are a major cause of wear, warp and brake failure.

The team will replace the traditional rotor material with a high-temperature aluminum alloy reinforced with functionally graded ceramic particles and fibers to create a lightweight but extremely durable material that can be customized to best serve each section of the rotor.

"These functionally graded materials allow us to create the optimal composition for each part of the rotor," Gupta explained. "The hybrid material allows us to provide reinforcement where additional strength is needed, increase high-temperature performance and minimize stress at the interfaces between the zones. Together, this should boost rotor life significantly, reducing warranty and replacement costs, and the weight savings will improve the vehicle's fuel efficiency."

"As auto companies strive to meet increasingly high efficiency and low emissions targets, there's a tremendous business opportunity in creating novel lightweight components which reduce overall vehicle weight and increase vehicle performance," said Adam Loukus, vice president of REL Inc. "Professor Gupta is highly regarded in MMC research and analysis, and his expertise — backed by the resources of NYU-Poly — is an ideal complement to our goals for this exciting project."
"This is a valuable opportunity for our students to gain real-world business experience," Gupta added. "Working closely with the REL team, they will understand the demands of the automotive component development process."

In addition to the automotive market, the composite rotors may benefit military fleets, where up-armored vehicles operate at weights well above their design capacity. Gupta and the team at REL expect to complete a functional rotor prototype within 12 months.