Precision Board High-Density Urethane
Published

Blue Origin successfully tests escape system, lands New Shepard rocket

On Oct. 5, the company successfully conducted an in-flight escape test of its New Shepard system.

Share

Blue Origin warned its next flight was going to be dramatic, no matter how it ended. So Oct. 5 was a good news day for the company as it successfully conducted an in-flight escape test of its New Shepard system, which is a fully reusable rocket and capsule. Everything went according to plan, taking the company one big step toward its goal of carrying people into space.

According to Space.com:

New Shepard blasted off from Blue Origin's test range in west Texas at 11:36 a.m. EDT (1536 GMT), kicking off today's uncrewed test. About 45 seconds into flight, at an altitude of 16,000 feet (5,000 meters), the capsule fired its onboard "escape motor" for 2 seconds, blasting itself hundreds of feet clear of the booster.

Blue Origin owner and billionaire entrepreneur Jeff Bezos wrote last month in a blog article that this flight would be its toughest test yet:

About 45 seconds after liftoff at about 16,000 feet, we’ll intentionally command escape. Redundant separation systems will sever the crew capsule from the booster at the same time we ignite the escape motor. The escape motor will vector thrust to steer the capsule to the side, out of the booster’s path. The high acceleration portion of the escape lasts less than two seconds, but by then the capsule will be hundreds of feet away and diverging quickly. It will traverse twice through transonic velocities – the most difficult control region – during the acceleration burn and subsequent deceleration. The capsule will then coast, stabilized by reaction control thrusters, until it starts descending. Its three drogue parachutes will deploy near the top of its flight path, followed shortly thereafter by main parachutes.

Space.com wrote:

At 11:41 a.m. EDT (1541 GMT), the New Shepard capsule landed softly under parachutes in the Texas desert as planned, raising a huge plume of dust as it hit the ground.

And of the booster? About three minutes later, the booster landed vertically on the launch pad. Bezos had predicted earlier the test would destroy it:

We’d really like to retire it after this test and put it in a museum. Sadly, that’s not likely. This test will probably destroy the booster. The booster was never designed to survive an in-flight escape. The capsule escape motor will slam the booster with 70,000 pounds of off-axis force delivered by searing hot exhaust. The aerodynamic shape of the vehicle quickly changes from leading with the capsule to leading with the ring fin, and this all happens at maximum dynamic pressure. Nevertheless, the booster is very robust and our Monte Carlo simulations show there’s some chance we can fly through these disturbances and recover the booster. If the booster does manage to survive this flight – its fifth – we will in fact reward it for its service with a retirement party and put it in a museum. In the more likely event that we end up sacrificing the booster in service of this test, it will still have most of its propellant on board at the time escape is triggered, and its impact with the desert floor will be most impressive.

"Wow. There it is. There you go, New Shepard. Look at her," launch commentator Ariane Cornell said once the booster landed. "What an extraordinary test and a tremendous final flight for both craft."

Check out video of the in-flight escape test below:

Precision Board High-Density Urethane
Composites One
De-Comp Composite Materials and Supplies
Janicki employees laying up a carbon fiber part
Park Aerospace Corp.
UV Cured Powder Coating from Keyland Polymer
CAMX 2024
3D industrial laser projection
pro-set epoxy laminate infusion tool high temp Tg
CompositesWorld
CompositesWorld
Carbon Fiber 2024

Related Content

Filament Winding

A new era for ceramic matrix composites

CMC is expanding, with new fiber production in Europe, faster processes and higher temperature materials enabling applications for industry, hypersonics and New Space.

Read More
Out of Autoclave

One-piece, one-shot, 17-meter wing spar for high-rate aircraft manufacture

GKN Aerospace has spent the last five years developing materials strategies and resin transfer molding (RTM) for an aircraft trailing edge wing spar for the Airbus Wing of Tomorrow program.

Read More
Plant Tours

Plant tour: Spirit AeroSystems, Belfast, Northern Ireland, U.K.

Purpose-built facility employs resin transfer infusion (RTI) and assembly technology to manufacture today’s composite A220 wings, and prepares for future new programs and production ramp-ups.

Read More
Out of Autoclave

Materials & Processes: Composites fibers and resins

Compared to legacy materials like steel, aluminum, iron and titanium, composites are still coming of age, and only just now are being better understood by design and manufacturing engineers. However, composites’ physical properties — combined with unbeatable light weight — make them undeniably attractive. 

Read More

Read Next

Thermoplastics

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Pressure Vessels

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Precision Board High-Density Urethane